
Egon Börger (Pisa) & Alexander Raschke (Ulm)

The Role of Modeling

for Design and Analysis of Software-Based Systems

Università di Pisa, Dipartimento di Informatica, boerger@di.unipi.it
Universität Ulm, Abteilung Informatik alexander.raschke@uni-ulm.de

See Ch.1 of Modeling Companion
http://modelingbook.informatik.uni-ulm.de

Copyright CC BY–NC-SA 4.0 1



The two ends of software-based system development

A reliable method for the development of software-based systems has to

bridge the gap

bw human understanding and formulation of real-world problems

– which involves application domain experts and system users

and deployment of their solutions by code-executing machines

– which involves experts in computing (design engineers, programmers)

The gap derives from the fact that

software and code executing computer are only part of the system

the other parts constitute the environment on which software and
computer depend and which they affect

– technical equipment, sensors, actors, information systems, users, etc.

Copyright CC BY–NC-SA 4.0 2



The gap is bw requirements and code

Requirement documents are descriptions of real-world phenomena

– typically written by domain experts for system design experts
(usually not knowledgeable in the application domain)

– in natural language, interspersed with diagrams, tables, formulae, etc.

– possibly ambiguous, incomplete, inconsistent

Compilable programs are software representations of real-word items
and actions, written for mechanical elaboration by machines (symbol
manipulation) and therefore coming with every needed implementation
detail (technical precision, completeness, consistency).

How can (informal) requirements and (formal) code, the latter written
to satisfy the former, be linked in a way to controllably

guarantee that the code does what the requirements describe?

How can the link between requirements and code be reliably preserved
during maintenance (when requirements may change)?

Copyright CC BY–NC-SA 4.0 3



What is needed to ‘bridge the gap’

accurately formulate the desired software behavior from the real-world
system perspective

– adequately relating the relevant real-world system elements and their
behavior to abstract concepts (requirements capture)

• to ‘ground’ the abstract model in the reality it represents (ground
model correctness problem)

provide the guarantee (implementation correctness problem) that the
ground model correctness is preserved through the design steps taken

– to modify the high-level requirements model (e. g. for exploration
purposes or to correct misunderstandings)

– to transform it to machine executable code

The two concerns are of different nature (see more below):

Ground Model Concern: application-domain focussed (epistemological)

Refinement Concern: machine-focussed (mathematical)

Copyright CC BY–NC-SA 4.0 4



The three Ground Model constituents

To correctly understand and formulate the real-word problem in the
context where the software will be executed, involves three descriptions:

a precise, complete, consistent description of the requirements

– providing a description of the desired system behavior at the level of
abstraction and rigor of the application domain

– at an application-problem-determined level of detailing (minimality)

a software specification: precise abstract description of the behavior
that is expected for the sw when it is executed in the system env

a description of those domain assumptions the system designers can
rely upon to justify that the spec satisfies the requirements

– this justification is about a behavioral correctness property :

• that under the domain assumptions, the spec will behave as system
component the way the requirements demand

Copyright CC BY–NC-SA 4.0 5



The epistemological role of Ground Models

Goal: to reach a common understanding by humans—experts of different
fields—of some to-be-implemented behavior in the real-world

requirements and domain assumptions

– are under responsibility of application domain experts

– must be made explicit for the sw spec

sw spec stands bw requs and sw: a ‘blueprint’ (‘contract’ for coding)

– must be formulated in a language all parties involved understand,
prior to coding (communication problem)

• cannot be a programming or formal logic language

‘Nearly all the serious accidents in which sw has been involved in
the past 20 years can be traced to reqs flaws, not coding
errors.’(Leveson 2012)

– must support any form of checkable explanations to justify the
‘correctness’ of the spec (verification/validation method problem)

• cannot be restricted to machine-verified proofs

Copyright CC BY–NC-SA 4.0 6



Characteristic properties of Ground Model specs

Using a sw spec as ‘blueprint’ (‘golden model’), to evaluate/debug
before accepting it as ‘contract for coding’ sw experts can rely upon

by reasoning about its properties (verification)

by observing its behavior through experiments (validation by testing)

requires four basic properties of ground model specs:

precise at the level of abstraction and rigor of the problem and of the
application domain it belongs to (‘informal accuracy’)

– i.e. unambiguous (in particular in its domain knowledge related
features) to be correctly understandable by the sw designer

correct: model elements adequately convey the meaning of what they
stand for in the real world and reliably convey original intentions

complete: contain every behaviorally relevant feature

consistent: conflicting objectives (which may be present in the original
requirements) are resolved

Copyright CC BY–NC-SA 4.0 7



Epistemological character of ground model precision

To be understandable for experts of different fields—solving the
communication problem—the ground model lg must permit to

calibrate the degree of precision (the abstraction level) of descriptions
to any given application-domain problem, accurately expressing

– any kind of objects in the real-world with their properties/relations

• items which constitute arbitrary system ‘states’

– any actions to change the set of objects or to modify some property
or relation among them

• actions which constitute arbitrary ‘state changes’

i.e. embrace a most general notion of state and state change so that
domain experts and software experts can reach a common understanding
of what system states and state changes are

‘The extra communication step between the engineer [read: the
domain expert] and the software developer is the source of the most
serious problems with software today.’(Leveson 2012)

Copyright CC BY–NC-SA 4.0 8



Epistemological basis of ground model justification

Ground models are conceptual models which relate real-world features
to linguistic elements.

Appropriateness of the association of real-world objects/relations with
model elements cannot be proved by mathematical means.

Leibniz: proportio quaedam inter characteres et res ... est
fundamentum veritatis

Model inspection can help: reviewing of the blueprint (not of code!)

performed in cooperation by application-domain experts and sw experts

providing evidence that the direct correspondence between calibrated
model and real-world elements is the desired one (i.e. adequate)

– in particular establishing correctness and completeness

NB. Issue is not ‘declarative/operational’, but calibration of precision

Copyright CC BY–NC-SA 4.0 9



Ground model justification needs verification and validation

Ground model inspection

resembles traditional code inspection but

– happens at a higher level of abstraction

– involves, besides sw designers and programmers, application domain

– helps to detect conceptual (not only programming) mistakes

involves two complementary analysis techniques:

– verification: using mathematical reasoning, based upon requirements
assumptions, to establish desired run properties

– validation by repeatable experiments (simulation, testing, running
scenarios), aimed at confirming/falsifying predicted model behavior

Both techniques require that specs are executable, conceptually and
mechanically (supported by machines)

contrary to widely held view on purely declarative, not executable specs

supporting test oracles and exploratory design development

Copyright CC BY–NC-SA 4.0 10



Refinement Concern: Management of Design Decisions

Refinement: a general methodological principle to manage complexity

piecemeal de-/composing a system into/from its constituent parts

which can be treated separately and (re-) combined

– the way mathematicians prove theorems from lemmas

Here this is applied to manage system design decisions:

formulate, check and document each design decision taken in linking,
through various levels of abstraction, the system architect’s view
(blueprint level) to the programmer’s view (compilable code level)

– split complex behavior/properties into a set (often a series) of simpler
actions/properties, proving the correctness of the decomposition

A practical method should allow the designer to

accurately link data and operations at whatever levels of abstraction

to link the system lifecycle activities, from requirements capture to
system maintenance, in an organic, effectively maintainable way.

Copyright CC BY–NC-SA 4.0 11



Using refinement for separation of concerns

Refinement supports the separation of concerns:

horizontal refinements permit to accurately introduce piecemeal
extensions and adaptations to changing requs or envs

– supporting design for change and system maintenance

vertical refinements permit to stepwise introduce more and more
details implementing model elements (domains, functions, rules)

– supporting design for reuse and development of design patterns

If the models are of mathematical nature, besides modeling one can
prove refinement correctness (from appropriate assumptions)

– to be useful for design and development practice, proofs should be
possible at every desired degree of detail:

• proof sketches

• detailed proofs, for humans to read

• machine checkable/generated proofs

each kind of verification coming with its merits and cost

Copyright CC BY–NC-SA 4.0 12



Horizontal refinement examples for Java/JVM models

JVMI

C

T

E

O

Java I

C

E

T

O

imperative

static class features
(procedures)

exception
handling

concurrent
threads

oo features

compile

compile

compileO

compile

compileC

I

E

T

Java

Java

Java

Java

JVM

JVM

JVM

JVM

1
1 This and the next figure are from JBook, c© 2001 Springer-Verlag Berlin Heidelberg, reused with permission.

Copyright CC BY–NC-SA 4.0 13



Vertical refinement examples for Java/JVM models

PC

PC

PC

Part II

(T
he

or
em

s 
7.

3.
1 

an
d 

8.
4.

1)
T

hr
ea

d 
S

yn
ch

ro
ni

za
tio

n 
an

d 
T

yp
e 

S
af

et
y

Type Safety and Compiler Soundness
(Theorems 8.4.1 and 14.2.1)

semantical equivalence

compile

Part IIIP
ar

t I

P
Java program

execJava
runs P

JVM program

(T
he

or
em

 1
6.

5)

C
om

pl
et

en
es

s
C

om
pi

le
r

typable
bytecode

(Theorem
 17.1)

Byte
co

de
 V

er
ifie

r

Com
pleteness/Soundness

assignment
bytecode type

defensiveVM
run−time checks

propagate type information
propagateVM

acceptsverifyVM

trustfulVM
runs in
diligentVM

no
 r

un
−

tim
e 

ch
ec

k 
vi

ol
at

io
ns

(T
he

or
em

 1
6.

4.
1)

B
yt

ec
od

e 
ty

pe
 a

ss
ig

nm
en

t S
ou

nd
ne

ss(Chap. 15) (Chap. 16)

(Chap. 17)

Copyright CC BY–NC-SA 4.0 14



Why ASMs are appropriate as ground models

Abstract State Machines (ASMs) are finite sets of rules of form

if condition then action

ASM language satisfies the fundamental ground model lg properties:

– general direct expressivity : any rigorously defined condition and
action involving any objects/properties are allowed

– easy comprehension: rules follow a common scheme to describe an
action to be taken when some condition is satisfied

– unambiguous definition: state transforming effect of such rules has a
simple precise definition which yields a rigorous notion of run

ASMs are executable (conceptually and machine-supported) and thus
can be validated by experiments

ASMs are mathematical objects and thus can be analyzed by
mathematical methods

Copyright CC BY–NC-SA 4.0 15



Variety of real-life ASM ground models (1)

industrial standards: ground models for the standards of

– OMG for BPMN (1.0/2.0): Börger,Thalheim,Sörensen 2007-11

– OASIS for BPEL: Farahbod et al. ASM’04 and IJBPMI 1 (2006)

– ECMA for C#: Börger, Fruja, Gervasi, Stärk: TCS 336 (2006)

– ITU-T for SDL-2000: Glässer, Prinz et al. 1998–2003

– IEEE for VHDL93: Müller, Glässer, Börger:1994–1995

– ISO for Prolog: Börger, Rosenzweig: 1991–1995

design, reengineering, testing of industrial systems:

– railway & mobile telephony network component sw (at Siemens)

– fire detection system sw (in German coal mines)

– implementation of behavioral interface specifications on the .NET
platform and conformence test of COM components (at Microsoft)

– business systems interacting with intelligent devices (at SAP)

– compiler testing and test case generation tools

Copyright CC BY–NC-SA 4.0 16



Variety of ASM ground models and their refinements (2)

programmming languages: definition/analysis of semantics &
implementation for major real-life lgs, e.g.

– SystemC

– Java/JVM (including bytecode verifier) see JBook

– C#

– domain-specific languages used at UBS

including machine verification of compilation schemes (Prolog2WAM
using KIV) & compiler back-ends (DFG projects using PVS)

architectural design: verification (e.g. of pipelining schemes or of
VHDL-based hardware design at Siemens), architecture/compiler
co-exploration

protocols: for authentication, cryptography, cache-coherence,
routing-layers for distributed mobile ad hoc networks,
group-membership etc.

modeling workflows, business processes, web services (SAP, Metasonic)
Copyright CC BY–NC-SA 4.0 17



Why ASMs support practical stepwise system development

ASMs come with a general refinement concept which directly follows the
arguably most general, abstract concept of state and state transforming
actions such that

practicing domain experts & system designers can use ASM
refinements to successively

– detail (stepwise implement)

– in a controllably correct (i.e. verifiable) manner

model abstractions down to executable code

As a consequence, the ASM method

is NOT a special-purpose but a wide-spectrum method

– assisting system engineers in every aspect and at any level of
abstraction of an effectively controllable construction of reliable
computer-based systems

Copyright CC BY–NC-SA 4.0 18



Characteristics of the ASM Method

Supports, within a single precise yet simple conceptual framework , and
uniformly integrates the following activities/techniques:

the major software life cycle activities, linking in a controllable
way the two ends of the development of complex software systems:

– requirements capture by constructing rigorous ground models

– architectural and component design bridging the gap between
specification and code by piecemeal, systematically documented
detailing via stepwise refinement of models to code

– documentation for inspection, reuse, maintenance (change
management) providing, via intermediate models and their analysis,
explicit descriptions of software structure and major design decisions

the principal modeling and analysis techniques

– dynamic (operational) and static (declarative) descriptions

– validation (simulation) and verification (proof) methods at any
desired level of detail

Copyright CC BY–NC-SA 4.0 19



ASM Analysis Techniques (Validation and Verification)

Practitioner supported to analyze ASM models by reasoning and
experimentation at the appropriate degree of detail, separating

orthogonal design decisions and complementary methods: abstract
operational vs declarative/functional/axiomatic, state- vs event-based

design from analysis (definition from proof)

validation (by simulation) from verification (by reasoning)

– e.g. ASM Workbench (ML-based, DelCastillo 2000), AsmGofer
(Gofer-based, Schmid 1999), XASM (C-based, Anlauff 2001), AsmL
(.NET-based, MSR 2001), CoreASM (since 2005), Asmeta

verification levels (degrees of detail)

– reasoning for human inspection (design justification)

– rule based reasoning systems (e.g. Stärk’s Logic for ASMs)

– interactive proof systems, e.g. KIV, PVS, Isabelle, AsmPTP

– automatic tools: model checkers, automatic theorem provers

Copyright CC BY–NC-SA 4.0 20



6 fundamental questions for building ground models

The ASM method leads to ask the following 6 questions when building a
ground model as ‘model of the system’s intended behaviour’

called golden model in the International Technology Roadmap for
Semiconductors (2005)

1. Who are the system agents and what are their relations? WIn
particular, wat is the relation between the system and its environment?

2. What are the system states?

What are the domains of objects and what are the functions,
predicates and relations defined on them? (object-oriented approach to
system design)

What are the static and the dynamic parts (including input/output) of
states?

Copyright CC BY–NC-SA 4.0 21



6 fundamental questions for building ground models (Cont’d)

3. How and by which transitions do system states evolve?

Under which conditions (guards) do the state transitions (actions) of
single agents happen and what is their effect on the state?

What is supposed to happen if those conditions are not satisfied?
Which forms of erroneous use are to be foreseen and which exception
handling mechanisms should be installed to catch them? What are the
desired robustness features?

How are the transitions of different agents related? How are the
internal actions of agents related to external actions of the
environment?

Copyright CC BY–NC-SA 4.0 22



6 fundamental questions for building ground models (Cont’d)

4. What is the initialization of the system and who provides it? Are
there termination conditions and, if yes, how are they determined? What
is the relation between initialization/termination and input/output?

5. Is the system description complete and consistent?

6. What are the system assumptions and what are the desired system
properties?

At the level of transitions this question can be formulated and dealt
with in terms of pre-/postconditions (assume/guarantee scheme)

Copyright CC BY–NC-SA 4.0 23



Models and methods in an ASM-based development process

TEST
CASES

domains
transition system

stepwise
refinement
reflecting
design

dynamic functions
external functions

decisions

manual

mechanized

PROVER

adding assumptionsadding definitions

SIMULATOR

using data from
application domain

Verification

Application Domain Knowledge

Ground Model

Informal Requirements

Code

Validation

+

2
2 (Figure from AsmBook, c© 2003 Springer-Verlag Berlin Heidelberg, reused with permission

Copyright CC BY–NC-SA 4.0 24



References

E. Börger: Construction and Analysis of Ground Models and their
Refinements as a Foundation for Validating Computer Based Systems.

Formal Aspects of Computing J. 19 (2007), 225-241

E. Börger: The ASM Refinement Method

Formal Aspects of Computing 15 (2003), 237-257

Refinement papers by G. Schellhorn in J.UCS 2001, 2008, TCS 2005,
ENTCS 2008, LNCS 5238

E. Börger and A. Raschke: Modeling Companion for Software
Practitioners. Springer 2018
http://modelingbook.informatik.uni-ulm.de

E. Börger and R. F. Stärk: Abstract State Machines Springer 2003.
pp.X+438. See http://www.di.unipi.it/AsmBook/

R. Stärk, J. Schmid, E. Börger: Java and the Java Virtual Machine.
Definition, Verification, Validation. Springer 2001.

Copyright CC BY–NC-SA 4.0 25

http://modelingbook.informatik.uni-ulm.de
http://www.di.unipi.it/AsmBook/


Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the original authors are mentioned

modified slides are made available under the same licence

the (re-) use is not commercial

Copyright CC BY–NC-SA 4.0 26


