
Egon Börger (Pisa) & Alexander Raschke (Ulm)

A Virtual Provider Model

for Web Service Mediation and Discovery

Università di Pisa, Dipartimento di Informatica boerger@di.unipi.it
Universität Ulm, Abteilung Informatik alexander.raschke@uni-ulm.de

See Ch. 5.1 of Modeling Companion
http://modelingbook.informatik.uni-ulm.de

Copyright CC BY–NC-SA 4.0 1

Problem Context and Goal

Web applications are truly distributed systems of heterogeneous
components

– which interact via the internet (communicating ASMs)

Resulting challenge for service-oriented system development: how to
provide accurate formulation and documentation of

– system design structure

– system properties and their verification

as support for checkably correct understanding by the variety of
stakeholders (domain experts, designers, programmers, users) of
quickly changing systems for service-oriented computations

Goal: define a precise, abstract, compositional mediator model

for message-based interactions of heterogeneous systems

suitable for composition of concurrent web services

Copyright CC BY–NC-SA 4.0 2

A High-Level Virtual Provider Model

From: Altenhofen,Boerger,Lemcke: J.BPIM 2006 & European/US Patent

defines a programming lg independent concept of mediation for
configuring/composing message-based interactions of web services

– to establish agreed level of component communication

instantiates to current mediation concepts via ASM refinements,
supporting ‘design for change’

offers accurate practical composition methods

provides a basis for rigorous (e.g. equivalence) definitions supporting

– refinements to service discovery algorithms and selection procedures

– proofs of concurrent run properties of interest

offers abstractions for data (state) and their transformations
(behavior) beyond pure message sequencing or control flow analysis

uses one bilateral and one multilateral interaction pattern, both
compatible with widely used communication mechanisms

Copyright CC BY–NC-SA 4.0 3

Role of the Virtual Provider

Request-Reply Pattern: mediator stays bw participants of an interaction
where, in a concurrent run, a requestor sends a request to a provider
which is supposed to provide and return an answer .

VP (Virtual Provider)

receives requests

forwards requests to potential actual providers

collects answers

constructs out of (possibly a subset of) answers a final answer

sends the final answer to the requestor

Idea: separate communication from VP internal Processing

This leads to the following VP architecture:1

1 Figure c© 2006 Springer-Verlag Berlin Heidelberg, reused with permission

Copyright CC BY–NC-SA 4.0 4

VirtualProvider architecture

VIRTUALPROVIDER

PROCESS

Scheduler

InReqMssg

OutAnswMssg InAnswMssg

OutReqMssg
SENDREQ

SENDANSW

RECEIVEREQ

RECEIVEANSW

VP components : -- 5 agents, managed by a scheduler

ReceiveReq -- receiving request messages from clients

SendAnsw -- sending answer messages back to clients

Process -- handle ReceivedRequests

SendReq -- sending request messages to (sub-) providers

ReceiveAnsw -- receiving answer messages from (sub-) providers

Copyright CC BY–NC-SA 4.0 5

Defining VP and its Send components

Leaving scheduling to orthogonal design decisions:

VirtualProvider = one of

{Process,
ReceiveReq,SendReq,ReceiveAnsw,SendAnsw}

Communication components are communication pattern instances:

SendReq = SendAnsw = SendPattern

leaving the variation of Send parameters (about acknowledgements,
discarding or buffering, etc.) to later design decisions

specification of the VP and its understanding are independent of the
details of the SendPattern definition

– see Sect.4.4.1.1 of the Modeling Companion Book for a precise
definition

Copyright CC BY–NC-SA 4.0 6

ReceiveReq component: instance of ReceivePattern

ReceiveReq is defined as ReceivePattern instance.

– see Sect.4.4.1.2 of the Modeling Companion Book for a precise
definition of the parameters

The parameter variations are left to later design decisions.

For VP we use only that ReceiveReq, as instance of the
ReceivePattern, contains the following rule

if ReadyToReceive then Receive

where the predicate ReadyToReceive and the machine Receive are
tailored for receiving VP request messages.

Copyright CC BY–NC-SA 4.0 7

Tailoring ReceiveReq for VP

The following concretizations are stipulated:

a run constraint to filter out not-genuine ‘req msgs’ :

if ReadyToReceive(m) then m ∈ InReqMssg

requests are recorded internally for further elaboration:

Receive(m) =
CreateReqObj(m) -- internal request representation
Consume(m)

where
CreateReqObj(m) =

let r = new (ReqObj) in Initialize(r ,m)
Initialize(r ,m) =
status(r) := start
reqMsg(r) := m

Copyright CC BY–NC-SA 4.0 8

ReceiveAnsw reflects specific Process Requirements

The ReceivePattern instance ReceiveAnsw must capture the
following VP requirements (requested by SAP):

each arriving request can trigger a sequence of (sub)requests

– forwarded to and to be answered by subproviders before proceeding
to the next subrequest, until the final answer can be compiled

each subrequest may consist of multiple independent (subsub)requests

next sequential subrequest may depend on received answers to the
subsubrequests of the current sequential subrequest

Thus requests viewed as root of an alternating seq/par tree:

each subrequest (seq-subtree node) may be root of a tree of
subsubrequests (par-subtree nodes)

NB. Sophisticated hierarchical subrequest structures can be obtained by
appropriate compositions (nesting) of VPs (see below)

Copyright CC BY–NC-SA 4.0 9

Seq-Par-Tree request structure

subreq1 . . . subreqmrequest done

r11 r1n(1)
. rm1 rmn(m)

. . .

For each request object req ∈ ReqObj a sequence seqSubReq(req) of
one-after-the-other to be processed subrequests subreqi ∈ SubReq
(1 ≤ i ≤ m).

For each subreqi ∈ SubReq a set parSubReq(subreqi) ⊆ ParReq of
subsubrequests rij (1 ≤ j ≤ n(i)) which are sent out in parallel to
other providers.

NB. seqSubReq and parSubReq may be dynamic.2

2 c© 2006 Springer-Verlag Germany, reused with permission

Copyright CC BY–NC-SA 4.0 10

Seq-Par-Tree structure determines ReceiveAnsw

As for ReceiveReq, also for ReceiveAnsw we use only that, as
instance of the ReceivePattern, it contains the following rule

if ReadyToReceive then Receive

where

if ReadyToReceive(m) then m ∈ InAnswMssg

-- filters out not-genuine ‘answ msgs’

Receive(m) =

Insert(m,AnswerSet(subRequestor (m)))

Consume(m)

answer msgs to each subrequest s are collected in AnswerSet(s)

subRequestor (m) identifies subrequest to which m provides an answer

Copyright CC BY–NC-SA 4.0 11

Process delegates to HandleSubReq

Process = choose r ∈ ReqObj with status(r) = start

CreateSubReqHandler(r)

Initialize(AnswerSet(r)) -- to ∅
where CreateSubReqHandler(r) =

let a =new (Agent) -- delegate processing incoming req

Initialize(a, r)

pgm(a) := HandleSubReq

Initialize(a, r) = -- record relevant data

handler (r) := a

req(a) := r

subReq(a) := head(seqSubReq(r)) -- current subrequest

status(r) := handleSubReq -- start mode of HandleSubReq

Copyright CC BY–NC-SA 4.0 12

HandleSubReq iterates through seqSubReq(req(a)

handle
SubReq

Done
Prepare
Answer

end

Handle
SubSubReq

waitFor
Answ

AllAnsw
Received

Prepare
NextSubReq

yes

no

HandleSubSubReq makes subsubrequests readyToSend

then handler (r) = a must waitForAnswers

– inserted by ReceiveAnsw into AnswerSet(subReq(a))

must PrepareNextSubRequest when AllAnswReceived3

3 Figure c© 2018 Springer-Verlag Germany, reprinted with permission

Copyright CC BY–NC-SA 4.0 13

Components of HandleSubReq

HandleSubSubReq =

PrepareBroadcast(parSubReq(subReq))

Initialize(AnswerSet(subReq)) -- to ∅
PrepareBroadcast(S) =

forall s ∈ S readyToSend(outReq2Msg(s)) := true

-- readyToSend for component SendReq

AllAnswReceived iff -- maybe only some answers needed

forall q ∈ toBeAnswered(parSubReq(subReq))

forsome m ∈ AnswerSet(subReq) IsAnswer (m, q)

Done iff subReq = done -- NB done 6∈ SubReq

Copyright CC BY–NC-SA 4.0 14

PrepareAnswer

handler (r) accumulates in AnswerSet(r) the AnswerSet(s) of
answers to sequential subrequests s ∈ seqSubReq(r)

PrepareNextSubReq =

subReq := next(subReq , seqSubReq(req),AnswerSet(subReq))

Add(AnswerSet(subReq),AnswerSet(req(self)))

When Done the handler a must PrepareAnswer

using accumulated AnswerSet(reqa) to compute the answer

to transform it to a msg in the format required for OutAnswMssg

PrepareAnswer =

readyToSend(outAnsw2Msg(answer (req ,AnswerSet(req))))

:= true

Copyright CC BY–NC-SA 4.0 15

Defining Mediator Equivalence

Definition of ServiceBehavior for VirtualProvider instances

ServiceBehavior (VP) =
{(inReqMssg , outAnswerMssg) |
IsAnAnswer (outAnswerMssg , inReqMssg)}

where IsAnAnwer (answer , request) iff
forsome handler reqMsg(req(handler)) = request and
handler in its last step did PrepareAnswer

with argument answer

Definition of Service Equivalence

VP ≡ VP ′ iff
ServiceBehavior (VP) ≡ ServiceBehavior (VP ′)

where the equivalence of ServiceBehavior can be defined in terms of
message contents extracted from InReqMssg and OutAnswMssg

– opens space for practical, not syntax-based but content-driven precise
semantical equivalence concepts and their mathematical analysis

Copyright CC BY–NC-SA 4.0 16

Functional VP Composition VP1 . . .VPn

by connecting the communication interfaces:

SendReq of VPi to ReceiveReq of VPi+1

– data mediation bw VPi -OutReqMssg and VPi+1-InReqMssg

SendAnsw of VPi+1 to ReceiveAnsw of VPi

– data mediation bw VPi+1-OutAnswMssg and VPi -InAnswMssg

VIRTUALPROVIDER

PROCESS

Scheduler

InReqMssg

OutAnswMssg InAnswMssg

OutReqMssg
SENDREQ

SENDANSW

RECEIVEREQ

RECEIVEANSW

Together with seq/par tree structure this VP composition provides
simple descriptions of sophisticated web service interaction patterns.

Copyright CC BY–NC-SA 4.0 17

Modular VP composition for control flow structures

A F
B C

D E

subreq1 subreq2 subreq3request answer

A F

BC D E

r11 answ11 r31 answ31

r21answ21 r22 answ22

4

4 c© 2018 Springer-Verlag Berlin Heidelberg, reprinted with permission

Copyright CC BY–NC-SA 4.0 18

Stateful refinement of VirtualProvider

Refine VP by an internal state component

– for recording request data to relate additions to previous requests

ReceiveReqStateful = ReceiveReq
where

Receive(m) =
if NewRequest(m) then ReceiveReceiveReq(m)
else

let r = prevReqObj(m) in
RefreshReqObj(r ,m)
Consume(m)

For a refinement to capture distributed web service discovery see
Friesen/Börger 2006 (reference below).

Copyright CC BY–NC-SA 4.0 19

Exl: VirtualProvider as interface adapter

Let Visp be a Virtual Internet Service Provider which serves
InternetDomain registration requests.

Assume the following request parameters:

DomainName for the new to-be-registered domain,

DomainHolderName of the legal domain owner,

AdministrativeContactName of the domain administrator,

TechnicalContactName of the person to be contacted for technical
issues.

Assume any request InternetDomain(DN ,DHN ,ACN ,TCN) gets
an answer ∈ OutAnswMssg containing four RIPE-Handles

Réseaux IP Européens

uniquely identifying the four request message parameters in the RIPE
database.

Copyright CC BY–NC-SA 4.0 20

Adaptation of Visp to new interface

Consider a domain name registry authority which implements a different
interface for registering new domain names, say consisting of four
request messages (instead of one):

RegisterDH (DomainHolderName)

RegisterAC (AdministrativeContactName)

RegisterTC (TechnicalContactName)

RegisterDN with parameters
DoName,DHRipeHandle,ACRipeHandle,TCRipeHandle

We configure a VirtualProvider instance linking it to Visp
without changing its internal structure

Copyright CC BY–NC-SA 4.0 21

Subprovider structure

incoming RegisterDomain request is split up into a sequence
seqSubReq(RegisterDomain) of two subrequests

–RegAccts has a set parSubReq(RegAccts) of three parallel
subsubrequests, each registering one of the indicated contacts

– when AllAnswReceived for these parallel subsubrequests, the second
sequential subrequest RegDomain is sent out

request message for RegDomain is constructed from:

–AnswerSet(RegAccts) of the first subrequest RegAccts and

–DomainName parameter DN of the original RegisterDomain
request

finally PrepareAnswer triggers outgoing answer message to be
sent by the subprovider back to Visp

By assumption Visp, from the received data, can build its answer msg
to the user who sent the initial InternetDomain registration request

Copyright CC BY–NC-SA 4.0 22

VirtualProvider instance to adapt Visp

VISP

RegisterDomain(
 DN,DHN, ACN,TCN)

DNRH, DHRH,
ACRH, TCRH

RegAccts

RegDomain

RegisterDH(DHN)

DHRH

RegisterAC(ACN)

ACRH

RegisterTC(TCN)

TCRH

RegisterDN(DN,DHRH,
ACRH,TCRH)

DNRH

VP

5

5 c© 2006 Springer-Verlag Berlin Heidelberg, reprinted with permission

Copyright CC BY–NC-SA 4.0 23

References

E. Börger and A. Raschke: Modeling Companion for Sw Practitioners.
Springer 2018. http://modelingbook.informatik.uni-ulm.de

M. Altenhofen, E. Börger, A. Friesen, J. Lemcke: A High-Level
Specification for Virtual Providers. Intern. J.BPIM (2006) pp. 267-278

M. Altenhofen and E. Boerger and J. Lemcke: System and a method
for mediating within a network. US Patent US7984188 B2 (July 19,
2011. https://www.google.de/patents/US7984188

A. Barros, E. Börger: A compositional framework for service interaction
patterns and communication flows. LNCS 3785 (2005) pp. 5-35

A. Friesen and E. Börger: A High-Level Specification for Semantic Web
Service Discovery Services. Proc. 6th Int. Conf. on Web Engeneering
(ICWE 2006). ISBN 1-59593-435-9, ACM Digital Library
http://doi.acm.org/10.1145/1149993.1150012

E. Börger and A. Cisternino and V. Gervasi: Modeling Web
Applications Infrastructure with ASMs. SCP 94(2), 2014, 69-92

Copyright CC BY–NC-SA 4.0 24

http://modelingbook.informatik.uni-ulm.de
https://www.google.de/patents/US7984188
http://doi.acm.org/10.1145/1149993.1150012

Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the original authors are mentioned

modified slides are made available under the same licence

the (re-) use is not commercial

Copyright CC BY–NC-SA 4.0 25

