
Egon Börger (Pisa) & Alexander Raschke (Ulm)

Modeling Traffic Light Control

From Requirements to an ASM Ground Model

Università di Pisa, Dipartimento di Informatica boerger@di.unipi.it
Universität Ulm, Abteilung Informatik alexander.raschke@uni-ulm.de

See Ch. 2.1 of Modeling Companion

Copyright CC BY–NC-SA 4.0 1



One-Way Traffic Light Requirements (M.Jackson, p.49)

PlantReq ... to enforce one-way traffic...the traffic is controlled by a pair
of simple portable traffic light units...one unit at each end of the
one-way section...connect(ed)...to a small computer that controls the
sequence of lights.

UnitReq. Each unit has a Stop light and a Go light.

PulseReq. The computer controls the lights by emitting rPulses and
gPulses, to which the units respond by turning the light on and off.

RegimeReq. The regime for the lights repeats a fixed cycle of four
phases. First, for 50 seconds, both units show Stop; then, for 120
seconds, one unit shows Stop and the other Go; then for 50 seconds both
show Stop again; then for 120 seconds the unit that previously showed
Go shows Stop, and the other shows Go. Then the cycle is repeated.

Copyright CC BY–NC-SA 4.0 2



Model elements (signature)

By UnitRequirement: two units each with

a StopLight(i) and a GoLight(i) for i = 1, 2

By PulseReqirement there are two attribute values on or off :

StopLight(i),GoLight(i) ∈ {on, off }
RegimeReq: the two lights of a unit seem to take opposite values (but
see below for a variation)

Stop(i) iff

StopLight(i) = on and GoLight(i) = off // show Stop i

Go(i) iff

StopLight(i) = off and GoLight(i) = on // show Go i

Combinations of these ‘derived’ predicates Stop(i),Go(i) define the
intended interpretation of the phase values (see below).

Copyright CC BY–NC-SA 4.0 3



One-Way Traffic Light Ground Model 1WayTrafLightSpec

RegimeReq cyclic 4-phases behavior model:1

Stop1
Stop2

Passed
(phase)

Switch
Lights(1)

Go1
Stop2

Passed
(phase)

Switch
Lights(1)

Stop2
Stop1

Passed
(phase)

Switch
Lights(2)

Go2
Stop1

Passed
(phase)

Switch
Lights(2)

1 Figure c© 2010 Springer Berlin-Heidelberg, reused with permission.

Copyright CC BY–NC-SA 4.0 4



Flowchart representation

phase values represented by control states (just names):

Stop1
Stop2

Go1
Stop2

Stop2
Stop1

Go2
Stop1

pictorially represented by circles labeled with the control state name

state changes pictorially represented by arrows leading

– from a control state phase = source

– to a rhomb labeled by a transition guard condition, from there

– to a rectangle labeled by an action and from there

– to a control state target

Behavioral meaning:

if the system is in the control state source and the condition is true
in the current system state, then the action is performed changing the
system state and the system enters the next control state target

Copyright CC BY–NC-SA 4.0 5



Functions/Locations

Passed(phase) = Elapsed(period(phase)): a derived function

period : a static (possibly configurable) function

– here with values as stated in RegimeReq: 50 or 120 seconds
depending on the phase argument

Elapsed : a monitored (say Boolean-valued) timeout function

– assumed to provide an external clock signal each time
period(ctlstate) has Elapsed since phase has been updated to
ctlstate

TimerAssumption. If in a run phase is updated by a rule to a
ctlstate, then after period(ctlstate) the timeout signal
Elapsed(period(ctlstate)) is set by an external timer (to true). It is
reset (to false) when the rule it triggers is executed.

Copyright CC BY–NC-SA 4.0 6



Functional model of RegimeReq action

Abstracting from the computer and its connection to the light units, at
the functional level of abstraction:

SwitchLights(i) for i = 1, 2 means updating the unit i light
StopLight(i),GoLight(i) values—either on or off —from their
current value to their opposite value required for the next phase

SwitchLights(i) =

Switch(StopLight(i))

Switch(GoLight(i))

where

Switch(l) = (l := l ′) // ′ denotes the opposite value

Copyright CC BY–NC-SA 4.0 7



Textual form of 1WayTrafLightSpec

1WayStopGoLightSpec =

if phase ∈ {Stop1Stop2,Go1Stop2} and Passed(phase) then

SwitchLights(1) -- from Stop(1) to Go(1) or viceversa

if phase = Stop1Stop2 then phase := Go1Stop2

else phase := Stop2Stop1

if phase ∈ {Stop2Stop1,Go2Stop1} and Passed(phase) then

SwitchLights(2) -- from Stop(2) to Go(2) or viceversa

if phase = Stop2Stop1 then phase := Go2Stop1

else phase := Stop1Stop2

where SwitchLights(i) =

Switch(StopLight(i)) Switch(GoLight(i))

Switch(l) = (l := l ′) -- ′ denotes the opposite value

Passed(phase) = Elapsed(period(phase))

Copyright CC BY–NC-SA 4.0 8



Recap of 1WayTrafLightSpec elements

5 controlled fcts (0-ary):

– to express RegimeReq

phase ∈ {
Stop1
Stop2,

Go1
Stop2,

Stop2
Stop1,

Go2
Stop1}

– by UnitReq StopLight(i),GoLight(i) ∈ {on, off } (with i = 1, 2)

1 derived fct (predicate): Passed(phase) = Elapsed(period(phase))

– defined by RegimeReq in terms of

• a static fct period and

• a monitored fct (predicate) Elapsed

4 rules updating controlled fcts triggered by dynamic guards

– defined by flowchart above

– using submachines SwitchLights(i) with i = 1, 2

NB. Here there is no shared and no output function

Copyright CC BY–NC-SA 4.0 9



Initialization and Correctness of 1WayTrafLightSpec

InitRequirement (added). The light regime initiates with both units
showing Stop.

Correspondingly initial states in the ASM model are defined by:phase =
Stop1

Stop2

 and Stop(1) and Stop(2)

By model inspection one can verify:

Correctness Property: Each legal run of 1WayTrafLightSpec
satisfies the RegimeReq.

A run of 1WayTrafLightSpec is legal if it is started in the initial
state and satisfies the TimerAssumption.

Copyright CC BY–NC-SA 4.0 10



Refinement for Management of Design Decisions

Needed: generalization of classical refinement method (Wirth/Dijkstra)

to cope with the “explosion of ‘derived requirements’ (the
requirements for a particular design solution) caused by the complexity
of the solution process” and encountered “when moving from
requirements to design” (Glass 2003, Fact 26)

to check and document by correctness proofs the design decisions
taken in linking through various levels of abstraction the system
architect’s view (at the abstraction level of a blueprint) to the
programmer’s view (at the level of detail of compilable code)

– split checking complex detailed properties into a series of simpler
checks of more abstract properties and their correct refinement

– provide systematic rigorous system development documentation,
including behavioral information and needed internal interfaces by
state-based abstractions

Copyright CC BY–NC-SA 4.0 11



Refinement guided by domain knowledge

Here: transform 1-agent ASM 1WayTrafLightSpec into a 2-agent
ASM separating

computer actions (pulse emission) performed by a control software
ASM 1WayTrafLightCtl

resulting light equipment actions performed by an environment ASM
LightUnitResponse

This means to split

one (at the abstract level ‘atomic’) SwitchLights step of the
system model 1WayTrafLightSpec into

two (at the more detailed level of abstraction again ‘atomic’) steps:

i.e. a computer action Emit(pulse) and a corresponding environment
action which Switches the lights.

Copyright CC BY–NC-SA 4.0 12



Sw/Env ASMs 1WayTrafLightCtl/ LightUnitResponse

For 1WayTrafLightCtl a submachine refinement suffices:

SwitchLights(i) =

Emit(rPulse(i)) -- trigger Switch(StopLight(i))

Emit(gPulse(i)) -- trigger Switch(GoLight(i))

where Emit(p) = (p := high)

For the env PulseReq steers the env re-action to pulses:

LightUnitResponse =

forall i ∈ {1, 2} LightUnitResponse(i)

where LightUnitResponse(i) =
ReactTo(rPulse(i))

ReactTo(gPulse(i))

Copyright CC BY–NC-SA 4.0 13



Environment LightUnitResponse components

ReactTo(rPulse(i)) = if Event(rPulse(i)) then

Switch(StopLight(i))

Consume(rPulse(i))

ReactTo(gPulse(i)) = if Event(gPulse(i)) then

Switch(GoLight(i))

Consume(gPulse(i))

where

Event(p) iff p = high

Consume(p) = (p := low )

NB. rPulse(i) and gPulse(i) shared by sw 1WayTrafLightCtl
and env LightUnitResponse. Inconsistent updates are excluded by
the LightUnitResponseAssumption below.

Copyright CC BY–NC-SA 4.0 14



Refining initialization and assumptions

InitPulseReq. Initially no pulses have been emitted.

Corresponding stipulation for 1WayTrafLightCtl and Pulses:

forall i ∈ {1, 2} rPulse(i) = gPulse(i) = low

LightUnitResponseAssumption. Every SwitchLights(i) step of the
software component 1WayTrafLightCtl triggers in the
environment immediately the corresponding event so that the
execution of the LightUnitResponse(i) rule happens immediately

– this means that the light unit response time is negligible with respect
to the beginning of the Passed count when the software control
1WayTrafLightCtl enters its next phase

The LightUnitResponseAssumption guarantees the update consistency
for the shared locations rPulse(i) and gPulse(i).

Copyright CC BY–NC-SA 4.0 15



Analysis of refinement correctness: elements to relate

Each sw step SwitchLights(i) is linked sequentially to an env step
LightUnitResponse(i) by LightUnitResponseAssumption.

In the refined 2-agent ASM model M ∗ a pair of sequentially linked
(successive) steps is called a segment of interest in a run of M ∗.

States S∗ of the refined model M∗ and S of the abstract model M are
called equivalent if

they have the same phase value and

satisfy the same light combination, i.e. satisfy the same conjunction
showLight(i) and showLight(j ) with i 6= j

– where showLight(k ) is one of Stop(k ) or Go(k )

Copyright CC BY–NC-SA 4.0 16



Refinement Correctness Property

A run of the refined model M ∗ is legal if it is started in its initial state
and satisfies the TimerAssumption and LightUnitResponseAssumption.

Proposition. For each legal run R∗ of the refined model M ∗ there is a
legal run R of the abstract model M such that for every natural number
n the state S∗ which is reached in the run R∗ at the end of the n-th
segment

[SwitchLights(i),LightUnitResponse(i)]

of interest is equivalent to the state S reached in the run R after the
n-th step SwitchLights(i) (a one-element run segment) of
1WayTrafLightSpec.

Proof by induction on runs.

NB. One M = 1WayTrafLightSpec step refined to two M ∗ steps.
In general: ASM refinement type (m, n) for any natural numbers m, n.

Copyright CC BY–NC-SA 4.0 17



When to Use Axioms and When Local Actions

reqs engineer together with domain expert prepare ground model and
domain description for sw designer

– grd mod Stop/Go ctl-states reflect req phenomena in terms of which
requested 4-phase light regime is expressed directly. This supports
customer/designer mediation & linking ground to sw model

sw designer refines ground model to sw spec for programmer

– GPulse/RPulse reflect sw-interface phenomena

proving refinement correctness provides needed link bw the models:
preservation of correctness and completeness of the ground model

– having instead of logical axioms abstract local actions, which directly
transform each traffic light phase into its successor phase, simplifies

• understanding of how the pulses emitted by the sw spec for the
control program are linked to their effect in the environment

• correctness proof for this link

Copyright CC BY–NC-SA 4.0 18



The underlying general concept: Control State ASMs

Control State ASM = ASM all of whose rules have the form2

if ctl state = i and cond then
rule

ctl state := j

n

cond 1

cond nrule

1rule

i

j

jn

1

control-states i , j , . . . represent an overall system status (mode, phase),
which allows the designer to

structure the set of states into subsets, visualizing this structure

refine control-state transitions by control-state submachines (modules)

– sequentializing (overall parallel) control where needed
2 Figure c© 2003 Springer Berlin-Heidelberg, reused with permission.

Copyright CC BY–NC-SA 4.0 19



General form of ASM rules: parallel execution

Finitely many rules of the following form (three equivalent notations):

if cond then M1

...

Mn

if cond then M1

...

if cond then Mn

par (M1, . . . ,Mn)

NB. In one (‘atomic’) step all of the rules whose guard evaluates to true
are executed in parallel.

This is to avoid conceptually unnecessary sequentialization.

NB. Be careful to avoid inconsistent updates.

Copyright CC BY–NC-SA 4.0 20



Classification of locations/functions

controlled out

derived

(monitored)
in

(interaction)

static

shared

dynamic

basic

function/relation/location

supporting the separation of concerns: information hiding, data
abstraction, modularization and stepwise refinement3

3 Figure c© 2003 Springer Berlin-Heidelberg, reused with permission.

Copyright CC BY–NC-SA 4.0 21



Characteristics of the ASM refinement concept

ASM refinement refines objects and data (the states)

– in 1WayTrafLightCtl the lights are replaced by pulses

and operations on them

– freedom to adapt abstraction level to design needs

Refinement Correctness Property stipulates the equivalence only for
corresponding states of interest

– an intermediate segment state in the refined model (here a step
reached by the first step in a segment) usually has nothing it would
correspond to in the abstract model

hiding details which are specific to refined abstraction level and cannot
(or need not) be related to anything in the abstract model

Equivalence can be any precise (not necessarily functional) relation
between parts of abstract/refined model

– reduces complexity of a precise intuition-guided formulation and
difficulty of refinement verification.

Copyright CC BY–NC-SA 4.0 22



Why multiple models and domain descriptions are needed

in realistic problems, the gap between

– requirements penomena that belong to the ground model

– sw-interface penomena that belong to the to-be-developed-program

has to be bridged by

– their clear distinction as belonging to different models, at different
levels of abstraction

‘a description of what you want to achieve—the optative
properties described in the requirement and specification’ (p.110)

– an explicit statement of their refinement relation, which may be
guided by props that appear in the application domain description

‘description of the domain properties that you’re relying on—the
indicative properties described in the domain description’ (p.110)

NB. Ground model abstractions and their refinement in the sw models
enhance modifiability and reusability of the models
(modeling-for-change)

Copyright CC BY–NC-SA 4.0 23



Integrate new reqs by horizontal ASM refinement

Additional requirements:

OrangeLightReq. Use simultaneous Stop and Go lights to indicate ‘Stop,
but be prepared to Go’.

OrangeLightRegimeReq. The simultaneous Stop and Go lights period is
10 seconds and is inserted into the cycle between the Stop period and
the Go period of the corresponding light.

Additional phases prepareToGo1 and prepareToGo2:

PrepareToGo(i) iff
StopLight(i) = on and GoLight(i) = on and

Stop(j ) for j 6= i

Safety: Stop(j ) for j 6= i (2 units never simultaneously ‘show Go’)

period function extended to take as value 10 seconds for new phases
(data refinement with extended TimerAssumption)

Copyright CC BY–NC-SA 4.0 24



Refined SwitchLights(i) in 1Way3ColorTrafLightSpec

Stop1
Stop2

Passed
(phase)

Switch
Lights(1)

Go1
Stop2

Passed
(phase)

Switch
Lights(1)

Stop2
Stop1

Passed
(phase)

Switch
Lights(2)

Go2
Stop1

Passed
(phase)

Switch
Lights(2)

Upper and lower occurrences of the SwitchLights component are
replaced by refined control state ASM of refinement type (1,2):4

Switch
GoLight(i)

Prepare
ToGo i

Passed
(phase)

Switch
StopLight(i)

4 Figures c© 2010 Springer Berlin-Heidelberg, reused with permission.

Copyright CC BY–NC-SA 4.0 25



Same refinement applicable at refined component level

Similarly refine 1WayTrafLightCtl by refining its two
SwitchLights components in question, using:

Emit(gPulse(i)) instead of Switch(GoLight(i))

Emit(rPulse(i)) instead of Switch(StopLight(i))

The LightUnitResponse environment ASM remains unchanged.

Rephrase the refined Timer Assumption, taking into account period for
the new phase, and formulate and prove the Refinement Correctness
Property.

Copyright CC BY–NC-SA 4.0 26



1Way3ColorTrafLightCtl by added Green&Red-lights

Stop1
Stop2

Passed
(phase)

Emit
gPulse(1)

Prepare
ToGo1

Passed
(phase)

Emit
rPulse(1)

Go1
Stop2

Passed
(phase)

Switch
Lights(1)

Stop2
Stop1

Passed
(phase)

Emit
gPulse(2)

Prepare
ToGo2

Passed
(phase)

Emit
rPulse(2)

Go2
Stop1

Passed
(phase)

Switch
Lights(2)

NB. Such horizontal ASM refinements add new features to the given
models but do not change the level of abstraction. Vertical ASM
refinements add details at refined levels of abstraction.5

5 Figure c© 2018 Springer-Verlag Germany, reused with permission.

Copyright CC BY–NC-SA 4.0 27



Model reuse: Two-Way Traffic Light Control

Requirements (Abrial 2010):

PlantReq. We intend to install a traffic light at the crossing between a
main road and a small road ... in such a way that the traffic on the main
road is somehow given a certain advantage over that on the small road.

MainRoadPriority . When the light controlling the main road is green, it
only turns ... red ... when some cars are present on the small road (the
presence of such cars is detected by appropriate sensors) ... provided that
road has already kept the priority for at least a certain (long) fixed delay.

SmallRoadAllowance. ... the small road, when given priority, keeps it as
long as there are cars willing to cross the main road ... provided a (long)
delay (the same delay as for the main road) has not passed. When the
delay is over, the priority systematically returns back to the main road.

Copyright CC BY–NC-SA 4.0 28



Reuse idea

Re-interpret the concept of 1-way control

providing the ‘permission to pass on the road in direction i ’ for two
opposite directions i = 1, 2

as a 2-way control

providing the ‘permission to pass on road i ’

where 1 stands for a main and 2 for a secondary road which cross each
other.

In other words: interpret the lights for the two exclusive directions as
lights for the (two directions of the) main road respectively for the (two
directions of the) small road .

Copyright CC BY–NC-SA 4.0 29



Different interpretations of ‘permission to go’

Light1

Light2

north

south

Light1

L
ig

h
t2

vertical

horizontal

L
ig

h
t2

Light1

1-Way: Go either 
            north or south

2-Way: Go either 
            horizontal or vertical

6

6 Figure c© 2018 Springer-Verlag Germany, reused with permission.

Copyright CC BY–NC-SA 4.0 30



Reuse 1WayTrafLightSpec: a data refinement

Go(1) is re-interpreted as ‘the main road is green’

Go(2) is re-interpreted as ‘the small road is green’

analogously for Stop(1) and Stop(2)

Incorporate MainRoadPriority and SmallRoadAllowance by refining the
monitored Passed predicate

adding for the two relevant phases (but not for the other two) the car
presence conditions to the time constraints

Sensor detecting the presence of cars on the small road is represented by
a monitored Boolean-valued function CarsOnSmallRoad

Copyright CC BY–NC-SA 4.0 31



Data refinement of Passed

if phase =
Go1

Stop2 then // we are in main road Go phase

Passed(phase) iff

Elapsed(period(phase)) and CarsOnSmallRoad

if phase =
Go2

Stop1 then // we are in small road Go phase

Passed(phase) iff

Elapsed(period(phase)) or

NoCarsOnSmallRoad

Delays mentioned in MainRoadPriority and SmallRoadAllowance
represented by value of period(phase) for the two phases in question.

Copyright CC BY–NC-SA 4.0 32



2WayTrafLightSpec correctness: formulation and proof

Link bw sensor actions in env and the effect they produce in the model
can be described by a run constraint (or by an env ASM):

SensorAssumption. Whenever the sensor detects a car on the small
road, the environment sets CarsOnSmallRoad immediately to true;
the value remains unchanged until the sensor detects that there is no
car on the small road. This is the moment in which the environment
resets CarsOnSmallRoad to false.

Combining the already justified 1WayTrafLightSpec correctness
property with model inspection for the new Two-Way Traffic Light
features supports the correctness claim:

Correctness Property: each legal run of 2WayTrafLightSpec
satisfies the above 2WayTrafLightRequirements.

Proof: induction on runs

Copyright CC BY–NC-SA 4.0 33



Separation of two different concerns

reuse the one-way controller for two-way traffic lights

– via reinterpretation of direction from ‘one of two opposite directions
on the same road‘ in {dir (road), dir ′(road)} to a pair of the two
opposite directions of each of the two crossing roads
{(dir (main), dir ′(main)), (dir (small), dir ′(small))}

linking one-way controller to two traffic lights (one for each direction)
and two-way controller to two pairs of traffic lights, one pair for each
road (components of each pair show the same light behaviour for the
two opposite road directions).

priority policy

– modifiable by just redefining Passed predicate, without changing the
control program for the corresponding light sequence

This is a typical way ASM abstraction and refinement can be exploited
to support the separation of concerns.

Copyright CC BY–NC-SA 4.0 34



Model reuse for extension with traffic law regulation

L
ig

h
t2

Light1

Light1

L
ig

h
t2

A

B

B right
B left

A right
A left

7

7 Figure c© 2018 Springer International Publishing AG Switzerland, reused with permission.

Copyright CC BY–NC-SA 4.0 35



Vertical timer refinement for 2WayTrafLightSpec

Design goal: replace TimerAssumption on external clock signal by an
internal timing mechanism

Needed: a local timer function which

is Set to the current value of the monitored system clock now upon
entering every to-be-timed ctlstate and

is used to check by the refined Passed predicate whether the delay
time in question has Elapsed , i.e. whether now − timer ≥ time

The system clock is assumed to be monotonically increasing and
measured in terms which are compatible with the terms used to
formulate the length of period for the phases in question.

Copyright CC BY–NC-SA 4.0 36



Internal timer module for 2WayTrafLightSpec

For Timed2WayTrafLightSpec it suffices to:

add to each SwitchLights component a parallel timer component
SetTimer

– also written Set(timer ) to distinguish this timer location from
other timer locations

SetTimer = (timer := now )
Initially timer = now -- initialization condition

data redefine Elapsed(phase) not as monitored but as derived fct

– of the variable now , the controlled variable timer and the static
function period

Elapsed(phase) iff now − timer ≥ period(phase)

For the rest just copy 1WayStopGoLightSpec from above (with
unchanged SwitchLights(i) components):

Copyright CC BY–NC-SA 4.0 37



1WayStopGoLightSpec ; Timed2WayTrafLightSpec

if phase ∈ {Stop1 Stop2,Go1 Stop2} and Passed(phase)

then

SwitchLights(1)

SetTimer

if phase = Stop1 Stop2 then phase := Go1 Stop2

else phase := Stop2 Stop1

if phase ∈ {Stop2 Stop1,Go2 Stop1} and Passed(phase)

then

SwitchLights(2)

SetTimer

if phase = Stop2 Stop1 then phase := Go2 Stop1

else phase := Stop1 Stop2

NB. The rule is literally copied from 1WayStopGoLightSpec!

Copyright CC BY–NC-SA 4.0 38



Ground Model Refinements: Survey

1Way
StopGo

LightSpec

GroundModel
Sect. 2.1.1

2Way

StopGo
LightSpec

1Way
StopGo
Orange

LightSpec

Timed

2Way

StopGo
LightSpec

1Way
StopGo
PulseCtl

1Way
StopGo
Orange

PulseCtl

Timed

1Way
StopGo
PulseCtl

Timed

1Way
StopGo
Orange

PulseCtl

data

Sect. 2.1.4

horizontal

Sect. 2.1.3

vertica
l

Sect.
2.1.4.1

vertica
l

Sect.
2.1.2

|||
vertical

exerc.
6

horizontal

exerc. 6

horizontal

vertical

|||
exercise 9

vertical

8

8 Figure c© 2018 Springer International Publishing AG Switzerland, reused with permission.

Copyright CC BY–NC-SA 4.0 39



How to combine requirements via refinement

Superposition problem: How are ... two requirements put together to
form the combined requirement, and what are the effects elsewhere
in the development? (M. Jackson op.cit. p.217)

An answer: use refinement and track its effect in the model hierarchy.

Illustration by Operated1WayTrafLight:

An alternative new version of the one-way traffic lights provides for a
traffic overseer who can override the default regime of Stop and Go
lights. The machine is equipped with two buttons marked ‘Hold’ and
‘NextPhase’. The overseer can extend the current phase of the light
sequence by pressing the Hold button, or curtail it by pressing the
NextPhase button. Pressing a button causes a pulse shared by the
machine.

The rules for modifying the default behaviour may be something like
this [we write NextPhase instead of Change in op.cit.]:

Copyright CC BY–NC-SA 4.0 40



Operated One-Way Lights Requirements

FstHoldReq: on a Hold cmd the current phase is extended from the
point already reached by its default length

NextPhaseReq: on a NextPhase cmd the current phase is terminated
and the next phase is immediately begun

SndHoldReq: if two Hold cmds are issued within one second, the
current phase is extended until a NextPhase cmd is issued.

OtherHoldReq: Other Hold cmds issued after the first Hold in a phase,
and before the end of the phase or a NextPhase cmd, are ignored.
(p.217-218)

Copyright CC BY–NC-SA 4.0 41



Combining automated control with operator commands

Conflicts bw the new requirements and the original ones are typical.

Let TrafLightPgm be any of the above (ground or refined) traffic
light models. We show how to combine it with an Operator
command model to a new machine where conflicts are resolved:

OperatedTrafLight =

Operator -- with priority to ‘override’ automated behavior

if not UnderOperatorCtl then TrafLightPgm

The interface UnderOperatorCtl must be defined in such a way that

the automated control TrafLightPgm performs the light control
also for commands issued by the operator, where not leading to an
inconsistency

conflicts between updates requested by operator commands and by the
automated control TrafLightPgm are resolved

Copyright CC BY–NC-SA 4.0 42



Operator =

if Event(cmd) then -- events triggered by the operator

if FstHold(cmd) then

Extend(phase) -- to satisfy FstHoldReq

RecordFstHold -- to recognize a SndHold cmd

if SndHold(cmd) then

AwaitCmd(NextPhase) -- to satisfy SndHoldReq

RecordSndHold -- to recognize ‘Other Hold cmds’

if NextPhase(cmd) then

SwitchToNext(phase) -- to satisfy NextPhaseReq

ResetOpCmdRecord -- to return to main pgm

Consume(Event(cmd))

Copyright CC BY–NC-SA 4.0 43



Operator submachines

FstHold(cmd) iff cmd = Hold and fstHold = −∞
RecordFst/SndHold = (fst/sndHold := now )

Extend(phase) = (timer := now ) -- restart current phase

-- ‘current phase is extended ... by its default length’

SndHold(cmd) iff cmd = Hold and sndHold = −∞ and

0 < now − fstHold ≤ 1 sec -- NB. implies fstHold 6= −∞
AwaitCmd(NextPhase) = (WaitingForNextPhaseCmd := true)

-- also derivable from sndHold 6= −∞

NextPhase(cmd) iff cmd = NextPhase

ResetOpCmdRecord =

fstHold := −∞ sndHold := −∞
WaitingForNextPhaseCmd := false

Copyright CC BY–NC-SA 4.0 44



Interpretation of ‘other Hold commands’

Other Hold cmds issued after the first Hold in a phase, and before the
end of the phase or a NextPhase cmd, are ignored.

This requirement seems to say that those ‘other Hold cmds’ satisfy:

fstHold > −∞ -- cmd comes after a first Hold cmd

and

(0 < now − fstHold > 1sec -- too late for a snd Hold cmd

or sndHold > −∞) -- or after the snd Hold cmd

NB. Upon entering a new phase, ResetOpCmdRecord will reset
fstHold and sndHold to −∞ and WaitingForNextPhaseCmd to false

either by Operator executing the NextPhase(cmd) or by the
refined TrafLightPgm)

Copyright CC BY–NC-SA 4.0 45



Possible Conflicts bw Operator and TrafLightPgm

If NextPhase(cmd) happens exactly when Passed(phase), then the
Operator command requests the same update of phase, timer
(with corresponding light updates SwitchTo. . . ) as the ones
TrafLightPgm is defined to perform.

But what should happen if an Event(Hold) happens when
Passed(phase)?

– Event(Hold) requests to Extend(phase)

–TrafLightPgm is defined to pass to next(phase)

There are various options the customer must decide upon.

Copyright CC BY–NC-SA 4.0 46



Solving Conflicts bw Operator and TrafLightPgm

Hold cmd is ignored

– e.g. by guarding the Operator rule additionally with
not Passed(phase). TrafLightPgm enters the new phase.

phase update by TrafLightPgm is ignored

– e.g. by adding to the guard Passed(phase) the conjunct
not Event(Hold). Then the new phase is not entered and the
current one is Extended by the Operator rule.

Hold cmd affects the new phase

– entered by phase update rule of TrafLightPgm

–Operator is executed for next(phase)

• e.g. by adding a special Operator rule for this case

For the sake of illustration we decide to give priority to Operator
cmds and to restrict TrafLightPgm control to cases which are
compatible with Operator cmds.

Copyright CC BY–NC-SA 4.0 47



UnderOperatorCtl interface definition

The predicate should disallow TrafLightPgm to make a step

when an Operator cmd is issued

– i.e. in case Event(cmd) holds for some cmd

or when the system is WaitingForNextPhaseCmd

– period in which the traffic lights are required not to change

Formally (remember ResetOpCmdRecord is executed upon
entering a new phase) we define:

UnderOperatorCtl iff

forsome cmd ∈ {Hold ,NextPhase} Event(cmd) = true

or WaitingForNextPhaseCmd = true

It then suffices to refine TrafLightPgm by

adding ResetOpCmdRecord

to each rule which updates the phase.

Copyright CC BY–NC-SA 4.0 48



Relating button pressing to machine events

Command Event Assumption. For each cmd ∈ Cmd ,
Pressed(button(cmd)) (in the real world) implies that Event(cmd)
immediately becomes true in Operator model.

Apparently also the at-most-one-cmd-per-time assumption is tacitly
made. Probably together with other assumptions, e.g. that default
length(phase) > 1 sec.

in OperatedTrafLight, an instantaneous atomic (0-time)
execution of rules is assumed so that if two Hold cmds fire within 1
sec but in different phases, meantime ResetOpCmdRecord
happened during the phase change.

To complete the model, all such assumptions have to be listed, providing
a complete basis for analysis.

NB. Proof failure often indicates missing (forgotten) assumptions!

Copyright CC BY–NC-SA 4.0 49



Recap: Modeling and refinement steps

ground model 1WayTrafLightSpec for functional behavior

vertical ASM refinement

– to separate computer and env actions

• 2-agent model: 1WayTrafLightCtl, LightUnitResponse

– to implement TimerAssumption

• replace monitored external time by internally computed time

horizontal ASM refinement to add new requirement (for orange light)

– 1Way3ColorTrafLightSpec/Ctl

model reuse by data refinement: 2WayTrafLightSpec/Ctl

Combining requirements (superposition problem), resolving conflicts by
appropriate ASM refinements

Copyright CC BY–NC-SA 4.0 50



Exercise in function classification

TwoWayFsm(nextMode,write,move) =

mode := nextMode(mode, input(head)) -- update internal state

out := write(mode, input(head)) -- print output

head := head + move(mode, input(head)) -- move reading head

TuringMachine(nextMode,write,move) =

mode := nextMode(mode, tape(head))

tape(head) := write(mode, tape(head)) -- update tape cell

head := head + move(mode, tape(head))

InteractiveTuringMachine(nextMode,write,move) =

mode := nextMode(mode, tape(head), input)

tape(head) := write(mode, tape(head), input)

head := head + move(mode, tape(head), input)

out := output(mode, tape(head), input)

Copyright CC BY–NC-SA 4.0 51



References

M. Jackson: Problem Frames. Addison-Wesley 2001

C. A. Gunter, E. L. Gunter, M. Jackson, P. Zave: A Reference Model
For Requirements and Specifications. IEEE Software, May/June 2000

J.-R. Abrial: Modeling in Event-B: System and Software Engineering.
Cambridge University Press 2010

E. Börger and A. Raschke: Modeling Companion for Software
Practitioners. Springer 2018
http://modelingbook.informatik.uni-ulm.de

Copyright CC BY–NC-SA 4.0 52

http://modelingbook.informatik.uni-ulm.de


Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the two original authors are mentioned

modified slides are made available under the same licence

the (re-) use is not commercial

Copyright CC BY–NC-SA 4.0 53


