
Egon Börger (Pisa) & Alexander Raschke (Ulm)

Termination Detection for Distributed Runs

Illustrating the role of model validation

Università di Pisa, Dipartimento di Informatica boerger@di.unipi.it
Universität Ulm, Abteilung Informatik alexander.raschke@uni-ulm.de

See Ch. 3.2 of Modeling Companion

Copyright CC BY–NC-SA 4.0 1



Termination detection for distributed computations

Goal: illustrate the role of mechanical model validation (besides
inspection)

for discovery of implicit assumptions and potential conflicts in
requirements

– in ‘the virtuous circle where difficulties with the formal specification
prompt further elicitation of the requirements’ (Gervasi/Riccobene,
Dagstuhl 2014)

Exl: Algorithm proposed by Dijkstra et al. (Inf.Proc.Lett. = EWD 840)

‘to demonstrate how the algorithm can be derived in a number of
steps’

We rephrase the requirements from EWD 840 and follow the analysis
performed by Gervasi/Riccobene (see references below).

Copyright CC BY–NC-SA 4.0 2



Plant&FunctionalRequirement

Plant&FunctionalReq. We consider N machines arranged in a ring. Each
machine is either active or passive. The state in which all machines are
passive is stable: the distributed computation is said to have terminated.
The purpose of the algorithm to be designed is to enable one of the
machines, machine nr. 0 say, to detect that this stable state has been
reached.

Signature reflecting these elements:

static finite set Machine = {m0, . . . ,mN−1} with designated
master = m0. We write number (mi) = i mod N .

static ring (background) structure: pred : Machine → Machine with
pred(mi+1) = mi mod N

mode ∈ {active, passive}
Stable iff forall m ∈ Machine mode(m) = passive

Copyright CC BY–NC-SA 4.0 3



ProbeSignatureRequirement

ProbeSignatureReq. Denote the process by which termination is to be
detected by the ”probe”. We assume the availability of communication
facilities such that (i) machine nr. 0 can initiate the probe by sending a
signal to machine nr. N − 1 (ii) machine nr. i + 1 can propagate the
probe around the ring by sending a signal to machine nr. i . The
propagation of the probe around the ring allows us to describe that
probe as sending a token around the ring. The probe ends with machine
nr. 0 being the machine at which the token resides. The token being
returned to machine nr.0 will be an essential component of the
justification of the conclusion that all machines are passive.

Signature: hasToken (‘the machine at which the token resides’)=true

ForwardToken = -- ‘sending a signal’ ‘hands over the token’

hasToken(self) := false -- from machine nr. i + 1

hasToken(pred(self)) := true -- to machine nr. i

Copyright CC BY–NC-SA 4.0 4



TokenProgressRequirement

TokenProgressReq. When active, machine nr. i + 1 keeps the token;
when passive, it hands over the token to machine nr. i . For each
machine, the transition from the active to the passive state may occur
”spontaneously”.

NB. i + 1 presumably refers to any machine except the master .
Tentative description (see below the final definition):

PassToken’ = -- NB. to be extended below

if mode = passive and self 6= master and hasToken

then ForwardToken

BecomePassive’ = SpontaneouslyDo

(if mode = active then mode := passive)

where

SpontaneouslyDo(M) = choose R ∈M∪ {skip} do R

Copyright CC BY–NC-SA 4.0 5



ActivationRequirement: some questions (1)

ActivationReq. Only active machines send so-called ”messages” to other
machines; msg transmission is considered instantaneous. After having
received a msg, a machine is active; the receipt of a msg is the only
mechanism that triggers for a passive machine its transition to activity.

Qu. 1: What to do with concurrently arriving multiple msgs?

to be treated as multiple triggers, to be elaborated one after the other?

to be collapsed into one cumulative trigger?

We guess (and assume): one trigger. Then the effect to receive a sent
msg via an ‘instantaneous transmission’ could be modeled abstractly as
follows:

SendMsg’(dest) = (hasMessagedest := true)

But see below for yet another problem with ActivationReq.

Copyright CC BY–NC-SA 4.0 6



ActivationRequirement: some questions (2)

Qu.2: Are msgs consumed and when?

Presumably yes, namely when becoming active.

Qu.3:

Constraint to ‘only active machines’?

Msg receipt ‘the only mechanism that triggers ... transition to
activity’?

Presumably these are properties stated for a declarative concern, to
describe the program axiomatically.

In the ASM model these two properties become true by definition.

Copyright CC BY–NC-SA 4.0 7



Tentative description of ActivationRequirement

TriggerActivation’ =

if mode = active then SpontaneouslyDo

choose dest ∈ Machine SendMsg’(dest)

BecomeActive’ =

if hasMessage then

mode := active

hasMessage := false -- consume trigger

Conflict: If at machine m, upon becoming active, a new ‘instantaneous’
msg arrives, sent by another machine’s SendMsg’(m) action?

That requires simultaneous update of hasMessagem to true and false.

Copyright CC BY–NC-SA 4.0 8



Resolving the ActivationReq conflict

By giving priority to activation. This can be modeled easily by update
instructions.

Here we use two update instructions Activate(trigger ) and
Deactivate(trigger ) with the following behavior:

simultaneously executed Activate(trigger ) actions, even if in
presence of a simultaneously to be executed Deactivate(trigger )
action, produce the single update trigger := true

Deactivate(trigger ) executed alone updates trigger to false

Update instructions are supported in CoreASM by plug-ins

Copyright CC BY–NC-SA 4.0 9



Message sending with resolved conflict

TriggerActivation’ = -- to be refined below by ‘coloring’

if mode = active then SpontaneouslyDo

choose dest ∈ Machine Activate(Triggereddest)

Define derived fct: hasMessage iff Triggeredself = true

BecomeActive =

if hasMessage then

mode := active

Deactivate(Triggered) -- consume this trigger

Copyright CC BY–NC-SA 4.0 10



Further requirements needed

Pbl. Machines can be (re-) activated after having handed over the token
to their predecessor

some mechanism needed to inform the token owner about the probe
failure resulting from such an activation

– so that this information is available when the token comes back to
the master

This information is provided by black coloring of activators and of tokens
they forward, such that:

a token, once colored black, remains black until the end of the probe,
where the master recognizes this as probe failure

Copyright CC BY–NC-SA 4.0 11



Reactivation coloring requirements (1)

RecordActivationEventReq. Machines and tokens are postulated to be
either black or white. A machine sending a message to a recipient with a
number higher than its own makes itself black.

The first clause requires a signature extension:

color (m), tokenColor ∈ {black ,white} for m ∈ Machine

The second clause requires an extension of Activate(Triggeredm) by
the following update:

if number (m) > number (self) then color (self) := black

Copyright CC BY–NC-SA 4.0 12



Reactivation coloring requirements (2)

ForwardActivationEventInfoReq. When machine nr. i + 1 propagates the
probe, it hands over a black token to machine nr. i if it is black itself,
whereas while being white it leaves the colour of the token unchanged.
Upon transmission of the token to machine nr. i , machine nr. i + 1
becomes white. (Note that its original colour may have influenced the
colour of the token).

These two clauses require an extension of the above defined
PassToken’ by updates concerning the coloring of tokens and
machines.

But before proceeding to this refinement, let us analyse a consistency
issue concerning the preceding two coloring requirements.

Copyright CC BY–NC-SA 4.0 13



Possible conflict bw msg sending and probe propagation

RecordActivationEventReq stipulates that in certain cases a message
sender machine must make itself black.

ForwardActivationEventInfoReq stipulates that a probe propagating
machine must make itself white.

A conflict shows up if a machine simultaneously sends a msg to a
machine with a higher number and propagates the probe.

Conflict resolution possible in many ways:

sequentialization of the two actions

assuming interleaving semantics: either a msg is sent or the probe is
propagated

allow a machine to SendMessage only when it does not have the
token (solution adopted here)

Copyright CC BY–NC-SA 4.0 14



Resolving msgSending/probePropagation conflict

TriggerActivation = // see ActivationReq

if mode = active then SpontaneouslyDo(TriggerAct)

where

TriggerAct = -- ‘instantaneous msg transmission’

if not hasToken then -- coloring conflict resolving guard

choose dest ∈ Machine do SendMessage(dest)

SendMessage(m) =

Activate(Triggered(m))

if number (m) > number (self) then color (self) := black

-- see RecordActivationEventReq

NB. In ASM model there is no need to stipulate for a machine that
‘while being white it leaves the colour of the token unchanged’, as
needed in a declarative formulation.

Copyright CC BY–NC-SA 4.0 15



Conflict between TokenProgressReq and ActivationReq

by TokenProgressReq, ‘the transition from the active to the passive
state may occur ”spontaneously”’

by ActivationReq, if a machine hasMessage it should
BecomeActive

Possible conflict resolutions:

interleaving semantics for concurrent processes: a machine either
elaborates a received msg or spontaneously becomes passive

priority to env stimuli: stipulate that machines can become passive only
when they are not triggered by the environment

BecomePassive = if not hasMessage then

SpontaneouslyDo

if mode = active then mode := passive

Copyright CC BY–NC-SA 4.0 16



ProbeStartRequirement

ProbeStartReq. Machine nr. 0 initiates the probe by making itself white
and sending a white token to machine nr. N − 1. After the completion
of an unsuccessful probe, machine nr. 0 initiates the next probe.

‘sending a white token’ and the ForwardActivationEventInfoReq, whereby

machine nr.i + 1 ... hands over a black token ... if it is black itself

require first of all to add coloring updates to ForwardToken:

ColorToken =

if self = master then tokenColor := white

else if color (self) = black then tokenColor := black

Furthermore, the master (as every token passing machine, by
ForwardActivationEventInfoReq) must GetWhite.

Copyright CC BY–NC-SA 4.0 17



Color&ForwardToken

Color&ForwardToken =

ColorToken

ForwardToken

GetWhite

where

ColorToken =

if self = master then tokenColor := white

else if color (self) = black then tokenColor := black

GetWhite = (color (self) := white)

Copyright CC BY–NC-SA 4.0 18



PassToken’ completion by coloring

PassToken’ is extended by coloring updates as follows:

PassToken =

if hasToken and mode = passive then

if self 6= master then Color&ForwardToken

NB. The ForwardActivationEventInfoReq stipulates:

‘Upon transmission of the token to machine nr. i , machine nr. i + 1
becomes white.’

Copyright CC BY–NC-SA 4.0 19



Probe Start and Termination

EvalActivityInfoReq. When a black token is returned to machine nr. 0 or
the token is returned to a black machine nr. 0, the conclusion of
termination cannot be drawn.

This requirement is expressed as follows:

ProbeNotSuccessful iff

hasToken(master ) and

(tokenColor = black or color (master ) = black )

The ProbeStartReq that ‘After the completion of an unsuccessful probe,
machine nr. 0 initiates the next probe’ is expressed as follows:

StartProbe =

if ProbeNotSuccessful and self = master then

Color&ForwardToken

Copyright CC BY–NC-SA 4.0 20



InitializationRequirement

InitializationReq. It is furthermore required that the detection algorithm
can cope with any distribution of the activity at the moment machine nr.
0 initiates the detection algorithm.

NB. There should also be NoMsgsAround .

A state is an initial state iff it satisfies the following:

forall m ∈ Machine

mode(m) ∈ {active, passive} -- InitializationReq

color (m) ∈ {black ,white} -- any initial machine coloring

hasToken(master ) = true -- the master hasToken

if m 6= master then hasToken(m) = false -- ... and nobody else

Triggered(m) = false -- meaning: NoMsgsAround

tokenColor = black -- triggers master to start a probe

Copyright CC BY–NC-SA 4.0 21



The final concurrent ASM

DistrTerminationDetect =

(m,TerminationDetectionm)m∈Machine

Each machine has an instance of the same program, namely:

TerminationDetection =

StartProbe -- done by master if ProbeNotSuccessful

TriggerActivation -- spontaneously if active without token

BecomeActive -- if hasMessage

BecomePassive -- spontaneously if not hasMessage

PassToken -- if passive and 6= master

Copyright CC BY–NC-SA 4.0 22



Functional correctness

TerminationDetected iff

hasToken(master ) and mode(master ) = passive

and color (master ) = white and tokenColor = white

Proposition: In every concurrent run of DistrTerminationDetect,
started in an initial state, if TerminationDetected becomes true in some
state, then this state is stable (meaning that all machine are passive).

For a proof (in need of an additional machine eagerness assumption
which is not mentioned in the paper, but results from the instantaneous
message transmission assumption) see ModelingBook Ch.3.2.3

Copyright CC BY–NC-SA 4.0 23



Final observation and References

CoreASM executed version revealed some of the inconsistencies and
missing assumptions.

Vincenzo Gervasi and Elvinia Riccobene: From English to ASM : On the
process of deriving a formal specification from a natural language one

– Nov. 8, 2013 (Dagstuhl Seminar 13372)
DOI: 10.4230/DagRep.3.9.74
URL: http://drops.dagstuhl.de/opus/volltexte/2014/4358/

Original article: Edsger W.Dijkstra, W.H.J.Feijen and A.J.M. van
Gasteren: Derivation of a termination detection algorithm for
distributed computations

– Information Processing Letters 16: 217-219 (1983)=EWD840

E. Börger and A. Raschke: Modeling Companion for Software
Practitioners. Springer 2018
http://modelingbook.informatik.uni-ulm.de

Copyright CC BY–NC-SA 4.0 24

http://modelingbook.informatik.uni-ulm.de


Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the two original authors are mentioned

modified slides are made available under the same licence

the (re-) use is not commercial

Copyright CC BY–NC-SA 4.0 25


