
Egon Börger (Pisa) & Alexander Raschke (Ulm)

A Sluice Gate Control Model

ASM model reuse via ASM refinements

Università di Pisa, Dipartimento di Informatica boerger@di.unipi.it
Universität Ulm, Abteilung Informatik alexander.raschke@uni-ulm.de

See Ch. 2.2 of Modeling Companion

Copyright CC BY–NC-SA 4.0 1



Sluice Gate Reqs (M. Jackson: Problem Frames p.49)

PlantReq A small sluice, with a rising and falling gate, is used in a
simple irrigation system. A computer system is needed to control the
sluice gate.

FunctionalReq. The requirement is that the gate should be held in the
fully open position for ten minutes in every three hours and otherwise
kept in the fully closed position.

MotorReq. The gate is opened and closed by rotating vertical screws.
The screws are driven by a small motor, which can be controlled by
clockwise, anticlockwise, on and off pulses.

SensorReq. There are sensors at the top and bottom of the gate travel;
at the top it’s fully open, at the bottom it’s fully shut

PulseReq. The connection to the computer consists of four pulse lines
for motor control and two status lines for the gate sensors.

Copyright CC BY–NC-SA 4.0 2



Sluice Gate elements: the signature

a controlled variable (0-ary function) phase indicating the current
phase with possible values fullyOpen, fullyClosed ,

a controlled variable gatePos ∈ {fullyOpen, fullyClosed} indicating
the current (no intermediate!) gate position,

as for 1WayTrafLightSpec:

– a derived time signal Passed(phase) = Elapsed(period(phase))

– a monitored timer function Elapsed coming with the
TimerAssumption:

• If in a run phase is updated by a rule to a ctlstate, then after
period(ctlstate) the timeout signal Elapsed(period(ctlstate)) is
set by an external timer (to true). It is reset (to false) when the
rule it triggers is executed.

static functions interval = 3 h and period(fullyOpen/Closed) (called
open/closedPeriod) with value 10 resp. 170min satisfying

interval = period(fullyClosed) + period(fullyOpen)

Copyright CC BY–NC-SA 4.0 3



Functional Behavioral Ground Model SluiceGateSpec

fully
Closed

Passed
(phase)

Open
Gate

fully
Open

Passed
(phase)

Close
Gate

Abstract from motor, screws, sensors, connection bw computer and gate:

OpenGate = (gatePos := fullyOpen)

CloseGate = (gatePos := fullyClosed)1

1 Figure c© 2010 Springer Berlin-Heidelberg, reused with permission.

Copyright CC BY–NC-SA 4.0 4



Initialization and Correctness

InitReq. The sluice gate initially is in the fully closed position.

Correspondingly we define the initial state S0 in the ASM model as
follows, with the external time count Elapsed assumed to be started in
the initial state:

phase = fullyClosed and gatePos = fullyClosed

Legal runs are started in the initial state and satisy the above
TimerAssumption.

Correctness Property: each legal run of SluiceGateSpec
satisfies the FunctionalReq with openPeriod = 10min,
closedPeriod = 170min.

Easily justified due to the atomicity of actions Open, Close.

Copyright CC BY–NC-SA 4.0 5



Vertical refinement (driven by domain knowledge)

MotorReq and SensorReq express domain knowledge on how the gate is
moved by a motor with the help of screws and sensors.

New signature elements represent this knowledge, still abstracting from
how the computer is connected to the motor:

controlled variables indicating

– current motorStatus ∈ {on, off }
– current moveDir ∈ {clockwise, anticlockwise}
monitored (parameterized) variables Event(top),Event(bottom)
assumed to signal that the gate in the real world did reach its
top/bottom position (see GateMotorAssumption below).

Wlog assume that moving up/down is realized by turning the screw
clockwise/anticlockwise.

InitReq: add motorStatus = off , moveDir = clockwise

Copyright CC BY–NC-SA 4.0 6



OpenGate, CloseGate for MotorDrivenSluiceGate

Open
Gate

= Start
ToRaise

opening
Event
(top)

Stop
Motor

Close
Gate

= Start
ToLower

closing
Event

(bottom)
Stop

Motor

StartToRaise =

moveDir := clockwise par motorStatus := on

StartToLower =

moveDir := anticlockwise par motorStatus := on

StopMotor = (motorStatus := off )2

But what about the FunctionalReq for MotorDrivenSluiceGate?

interval = closedPeriod + openPeriod?
2 Figure c© 2010 Springer Berlin-Heidelberg, reused with permission.

Copyright CC BY–NC-SA 4.0 7



Completing FunctionalReq for MotorDrivenSluiceGate

interval =

closedPeriod + openPeriod + openingTime + closingTime

Keeping interval = 3h we must decide upon the duration of the
opening/closing phases and where to put them, for example:

0 < closedPeriod < 170 min and 0 < openPeriod < 10 min

closedPeriod =

interval − (openPeriod + openingTime + closingTime)

Legal MotorDrivenSluiceGate runs must satisfy the following:

GateMotorAssumption. If after any StartToRaise/Lower step the
motor remains on in the corresponding direction, at the latest after
opening/closingTime the Event(top/bottom) happens, namely when
the gate has reached its final position gatePos = fullyOpen/Closed .

Copyright CC BY–NC-SA 4.0 8



Refinement correctness for MotorDrivenSluiceGate

Correctness Property. MotorDrivenSluiceGate correctly
refines SluiceGateSpec and each of its legal runs satisfies the
MotorRequirement and the SensorRequirement.

MotorDrivenSluiceGate in each 3-h-interval moves from
fullyClosed to fullyOpen and back to fullyClosed . It

– stays fullyClosed for closedPeriod and then after at most
openingTime enters phase fullyOpen

– stays fullyOpen for openPeriod and then after at most
ClosingTime enters phase fullyClosed

Copyright CC BY–NC-SA 4.0 9



Refinement Type

Refinement type is (1,2), meaning that:

every segment consisting of one single step Open resp. Close in
SluiceGateSpec is refined by

a segment of two corresponding MotorDrivenSluiceGate steps:

– a step StartToRaise resp. StartToLower together with
entering the intermediate ctl state opening resp. closing , followed
by

– one StopMotor step together with entering the main ctl state
fullyOpen resp. fullyClosed

Copyright CC BY–NC-SA 4.0 10



Vertical refinement SluiceGatePulseControl

PulseReq. The connection to the computer consists of four pulse lines
for motor control and two status lines for the gate sensors.

Domain knowledge provides info for a refinement which separates sw
control from physical motor reaction.

Output location pulseLine(e) represents where to output the pulse e:

StartToRaise/Lower =

Emit(Pulse(clockwise/anticlockwise))

Emit(Pulse(motorOn))

StopMotor = Emit(Pulse(motorOff ))

where

Emit(Pulse(e)) = (pulseLine(e) := high) -- output to pulse line

Copyright CC BY–NC-SA 4.0 11



Environment interacting with SluiceGatePulseCtl

For the sake of correctness analysis, we define an env ASM to describe
the physical equipment actions when pulses e appear on the
pulseLine(e) (location monitored by MotorResponse):

MotorResponse =

if Event(e) then

if e = clockwise/anticlockwise then

moveDir := clockwise/anticlockwise

if e = motorOn/motorOff then motorStatus := on/off

Consume(e)

where

Event(e) iff pulseLine(e) = high

Consume(e) = (pulseLine(e) := low )

Copyright CC BY–NC-SA 4.0 12



Assumptions Relating Software and Environment

A mechanism is needed to relate software and physical components:

PulseOutput Assumption: each Emit(Pulse(e)) in the computer
SluiceGatePulseCtl yields Event(e) to immediately happen in
the environment MotorResponse

– NB. Treating pulseLine(e) as a shared location—output location for
SluiceGatePulseCtl and monitored location for
MotorResponse—implies interpreting ‘immediate
MotorResponse’ as letting perform its step before
SluiceGatePulseCtl emits a new pulse.

Similarly, the GateMotorAssumption on Event(Top/Bottom) is
assumed to be satisfied in the presence of the status line transmission
of sensor values.

Copyright CC BY–NC-SA 4.0 13



Proving Correctness of the Pulse Refinement

This refinement is of type (1,2):

one abstract step StartToRaise/Lower of
MotorDrivenSluiceGate corresponds to

two refined steps

–Emit(Pulse(clockwise/anticlockwise))
Emit(Pulse(motorOff /On))
of SluiceGatePulseCtl followed by

– a MotorResponse step updating moveDir and motorStatus

analogously for StopMotor steps

They have equivalent effect wrt setting moveDir , motorStatus and
ctl state. Therefore the correctness property holds—adapted to consider
the possible time delay (if any) between computer and env steps.

Copyright CC BY–NC-SA 4.0 14



Adding requirements by data refinement

MotorDecelerationReq: for some motorDecelarationTime, gate may
still move after the motor has been turned off when moving up/down.

Solution by a pure data refinement:

add motorDecelarationTime twice to interval (once per stopping
moving up/down)

interval = closedPeriod + openPeriod
+openingTime + closingTime + 2×motorDecelarationTime

maintain as fullyOpen/Closed position the one reached in
opening/closingTime with respect to which the difference of the
gatePos ition that is reached by decelaration can be neglected

reformulate Correctness Property adding motorDecelarationTime to
closed/openPeriod

NB. Alternative: operation refinement based upon additional sensors
which report the complete gate movement stop: domain experts decide!

Copyright CC BY–NC-SA 4.0 15



Model reuse for SluiceGateOperator

Requirements: MotorReq, SensorReq as in SluiceGateReq.

Changes for the other requirements:

PlantReq. ... to raise and lower the sluice gate in response to the
commands of an operator.

FunctionalReq. ... the operator can position the gate as desired by
issuing Raise, Lower and Stop commands: the machine should respond
to a Raise by putting the gate and motor into a Rising state, and so on
... The Rising and Falling states are mutually exclusive.

PulseReq. ... and a status line for each class of operator command.

Copyright CC BY–NC-SA 4.0 16



Multiple command problem

Idea: replace time-triggered raise/lower transitions by
operator-command-triggered ones

replace time events Passed(fullyClosed/Open) by command events
Event(Raise/Lower ),

rename phases opening/closing to rising/falling ,

Replacing checks of Elapsed(time) (governed by timer rules or
assumptions) by guards checking whether a command has been issued
leads to a general question:

How to discipline command issuing by the operator?

How to prevent the machine from executing some in a given context
undesired but issued command?

Solutions: declaratively (constraining legal runs by excluding certain
command sequences) or operationally.

Copyright CC BY–NC-SA 4.0 17



How to Discipline Operator Commands

In a math model one can always constrain runs to exclude certain cmd
sequences. In real-life, one can issue operating instructions, but one
cannot rely upon such instructions being followed always perfectly.

Event classification (‘Reasons for disobedience’ op.cit. p.112)

– not sensible cmd: ‘makes no sense in the context of preceding cmds’

– not viable cmd: ‘inappropriate or impermissible in the current state’

– not overrunnable cmd: the response to the cmd has to be finished
before other cmds come in (Ch.9.2 op.cit. on ‘overrun concern’ due
to mismatch of speeds bw triggering an action and its exec)

• to be resolved by inhibition, ignoring or buffering events that occur
when the machine is not ready to participate in them

Copyright CC BY–NC-SA 4.0 18



Example for cmd sequence constraints

CommandSequenceRequirement:

at each moment at most one command is issued: a reasonable
assumption if there is only one operator

only successive command pairs (Raise,Stop) or (Lower,Stop) or vice
versa (Stop,Raise) or (Stop,Lower) make sense

Then one can reuse the SluiceGateSpec rules as follows:

replacing time guard Passed(phase) by Event(cmd)

adding Consume(cmd) to Perform(cmd) where

Perform(Raise/Lower ) = StartToRaise/Lower
Perform(Stop) = StopMotor

Copyright CC BY–NC-SA 4.0 19



SluiceGateOperator for CommandSequenceReq

fully
Closed

Event
(Raise)

Start
ToRaise

rising
Event
(top)

Stop
Motor

fully
Open

Event
(Stop)

Stop
Motor

middle

Stop
Motor

Event
(Stop)

falling
Start

ToLower

Event
(Lower)

Event
(bottom)

Stop
Motor

NB. This machine in each phase reacts only to certain events. No
warning is reported for unforseen events.3
3 Figure c© 2018 Springer-Verlag Germany, reused with permission.

Copyright CC BY–NC-SA 4.0 20



InertialEffectRequirement

If Event(Raise/Lower) is immediately followed by Event(Stop),
then the gate travel may not yet have started

then the correct control state to navigate to is fullyClosed/Open

Copyright CC BY–NC-SA 4.0 21



CommandSequenceRequirement implications

SluiceGateOperator should ‘reject’ as insensible the second
command in any of the following command pairs, should one of them be
issued:

Raise, Lower: possibly not viable for physical reasons,

Raise, Raise: not viable, including ‘no Raise in top position’,

Lower, Raise: possibly not viable for physical reasons,

Lower, Lower: not viable, includes ‘no Lower in bottom position’,

Stop, Stop: Stop when Stopped not reasonable.

For robustness concerns add the case of a Lower/Raise command issued
when the gate is in its bottom/top position.

We interpret rejection as a) ‘not executing’ the to-be-rejected command
and b) ‘notifying’ the appearance of the insensible command sequence.

Copyright CC BY–NC-SA 4.0 22



RobustSluiceGateOperator

= SluiceGateOperator par DetectInsensibleCmd

DetectInsensibleCmd =

if phase ∈ {fullyClosed , fullyOpen,middle} then

Reject(Stop, phase) -- no StopStop

if phase = fullyClosed then Reject(Lower , phase)

-- no Lower at bottom

if phase = fullyOpen then Reject(Raise, phase)

-- no Raise at top

if phase ∈ {rising , falling} then

Reject(Lower , phase) -- No RaiseLower, no LowerLower

Reject(Raise, phase) -- No RaiseRaise, no LowerRaise

Reject(cmd , phase) = if Event(cmd) then

Report(cmd , phase) Consume(cmd)

Copyright CC BY–NC-SA 4.0 23



Report of erroneous commands case-wise definable

The same way one can separate normal from exceptional behavior.

Report(cmd , phase) =

if cmd = Stop and

phase ∈ {fully/partlyClosed , fully/partlyOpen}
then Notify(StopStop)

if cmd = Lower then

if phase = fullyClosed then Notify(LowerAtBottom)

if phase = rising then Notify(RaiseLower )

if phase = falling then Notify(LowerLower )

if cmd = Raise then

if phase = fullyOpen then Notify(RaiseAtTop)

if phase = rising then Notify(RaiseRaise)

if phase = falling then Notify(LowerRaise)

Copyright CC BY–NC-SA 4.0 24



Copyright CC BY–NC-SA 4.0 25



References

M. Jackson: Problem Frames. Addison-Wesley 2001

C. A. Gunter, E. L. Gunter, M. Jackson, P. Zave: A Reference Model
For Requirements and Specifications. IEEE Software, May/June 2000

E. Börger and A. Raschke: Modeling Companion for Software
Practitioners. Springer 2018
http://modelingbook.informatik.uni-ulm.de

Copyright CC BY–NC-SA 4.0 26

http://modelingbook.informatik.uni-ulm.de


Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the two original authors are mentioned

modified slides are made available under the same licence

the (re-) use is not commercial

Copyright CC BY–NC-SA 4.0 27


