
Egon Börger (Pisa)

Reachability by Shortest Paths in a Graph

Illustrating Stepwise ASM Refinements

Dipartimento di Informatica, Università di Pisa
boerger@di.unipi.it

See Modeling Companion Ch. 4.3 (refinement variations of the Proxy
programming pattern) and AsmBook Ch.3.21
1 Figures c© 2003 Springer Berlin-Heidelberg, reused with permission.

Copyright CC BY–NC-SA 4.0 1

The problem

Given a directed graph:

a (finite) set Node

a set Edge

a distinguished node source

Design algorithms to compute:

the set of nodes n which are reachable from source

for each node n the ‘shortest’ path from source to n (wrt a path
measure given by the weight of edges)

Verify the algorithms proving their correctness and other properties of
interest.

Copyright CC BY–NC-SA 4.0 2

A sequence of refinement steps

Computing Reachability Set: ShortestPath0 (ground model)

Wave Frontier Propagation: ShortestPath1
Nodewise Frontier Propagation to Neighborhood: ShortestPath2
Nodewise and Edgewise Frontier Propagation to Neighbors:
ShortestPath3
Queue and Stack Implementation of Frontier and Neighborhoods:
ShortestPath4
Introducing abstract weights for measuring paths and computing
shortest paths: ShortestPath5 (Moore’s algorithm)

Performing a rule optimization

Instantiating data structures for measures and weights: a C++

program

Copyright CC BY–NC-SA 4.0 3

Computing Graph Reachability Set

The problem:

visit once every node which is reachable from source

do not revisit nodes that have already been visited , so that the
procedure terminates for finite graphs

Solution idea:

starting at source, move along edges to reach neighbor nodes and
label every reached node as visited

proceed in waves, pushing in each step the visited nodes one edge
further without revisiting nodes which have already been labeled as
visited

Copyright CC BY–NC-SA 4.0 4

From English to a mathematical model: ShortestPath0

Initial state: only source is labeled as visited

ShortestPath0 =

forall u ∈ visited forall v ∈ neighb(u) -- wave propagation

if v /∈ visited then visited(v) := true

where

neighb(u) = {v | (u, v) ∈ E}
Correctness Property: Each node which is reachable from source is
exactly once labeled as visited.

Proof of existence claim: induction on the length of the paths starting
at source.

– induction basis: by initialization assumption

– induction step: by applying ShortestPath0 rule once more

Proof of uniqueness property: rule guard ensures that no node which
has already been visited is relabeled.

Copyright CC BY–NC-SA 4.0 5

Proving termination for ShortestPath0

Termination Property: ShortestPath0 terminates for finite graphs:
started in the initial state, it reaches a state in which there is no longer
any edge (u, v) ∈ E where u is labeled as visited but v is not.

Proof: by each step of ShortestPath0 the (assumed to be finite)
set of reachable nodes which have not yet been visited decreases.

NB. The refinement steps should preserve Correctness and Termination.

Copyright CC BY–NC-SA 4.0 6

First refinement: identify frontier of wave propagation

frontier = set of nodes ‘last labeled’ as visited (here: in the last step)
Initially frontier = {source}

scan delete u from frontier
shift frontier to neighb(u)

forall u in frontier

ShortestPath1 = forall u∈ frontier -- restrict to ‘last labeled’

ShiftFrontierToNeighb(u)

Delete(u, frontier) -- not any more ‘last labeled’

where

ShiftFrontierToNeighb(u) =

forall v ∈ neighb(u) do ShiftFrontierTo(v)

ShiftFrontierTo(v) = if v /∈ visited then

visited(v) := true Insert(v , frontier) -- v gets ‘last labeled’

Copyright CC BY–NC-SA 4.0 7

Proving refinement correctness

Claim: ShortestPath1 is a correct refinement of ShortestPath0.

Proof. Show by induction on runs that the labeling steps of
ShortestPath0 and of ShortestPath1

which label some neighbor of some u as visited

are in 1-1 correspondence and perform the same labelings.

Induction basis t = 1: both machines perform one labeling step (if any)
and label exactly the nodes in neighb(source) as visited

since by initialization frontier = {source}

Copyright CC BY–NC-SA 4.0 8

Refinement correctness proof (Cont’d)

Induction step t ⇒ t + 1:

Consider any u ∈ frontier .

– if ShortestPath1 can make a labeling step with
ShiftFrontierToNeighb(u)

– then ShortestPath0 can make a labeling step for neighb(u)

so that the same nodes are labeled as newly visited .

In step t + 1, ShortestPath0 applies labeling only to u ∈ frontier .

– Proof. For every u /∈ frontier : if u has been visited by
ShortestPath0 in a step before step t , then all its neighbors
have been visited in the next step of ShortestPath0. Therefore
ShortestPath0 does not revisit them in step t + 1.

A non-empty step of ShortestPath1 which is not a labeling step may
be (only) the last one: it empties frontier .
Therefore Correctness and Termination properties are preserved .

Copyright CC BY–NC-SA 4.0 9

Second refinement: implementing ‘forall’

Idea: nodewise frontier propagation, implementing forall by choose

Non-deterministic scheduling (to keep design space open)

Later refinements specify constraints on select ion fct to guarantee
properties of interest (e.g. fairness to yield completeness of node visits)

scan
not empty

frontier
choose u in frontier

delete u from frontier
shift frontier to neighb(u)

ShortestPath2 =

if frontier 6= ∅ then choose u ∈ frontier -- replacing forall

ShiftFrontierToNeighb(u) Delete(u, frontier)

last labeled in frontier is refined to mean any visited node u to which
ShiftFrontierToNeighb(u) has not yet been applied

Copyright CC BY–NC-SA 4.0 10

Refinement correctness for nodewise frontier propagation

Simulation Lemma. ShortestPath2 runs with breadth-first
nodewise frontier propagation simulate ShortestPath1 runs.

In other words, ShortestPath2 with breadth-first nodewise frontier
propagation is a correct refinement of ShortestPath1.

Proof: One ShortestPath1 step, applied to a frontier , corresponds
to the segment of ShortestPath2 steps which choose successively all
and only the nodes from this frontier

applying the same ShiftFrontierToNeighb(u).

This is called a (1,m)-refinement with various m, depending on the size
m of the neighborhoods which dynamically determine the frontier.
Copyright CC BY–NC-SA 4.0 11

Relating frontier propagation in ShortestPath1/2 runs

Slow Down Lemma. For maximal ShortestPathi runs
(i = 1, 2), i.e. where each applicable rule is eventually applied, the
following holds:

1. Claim 1. For each step t and each u ∈ frontiert(ShortestPath2)
there exists a t ′ ≤ t such that u ∈ frontiert ′(ShortestPath1).

2. Claim 2. For each step t and each u ∈ frontiert(ShortestPath1)
there exists a t ′ ≥ t such that u ∈ frontiert ′(ShortestPath2).

Here we denote by expt the value of exp in the state reached by t steps.
An index i ∈ {1, 2} in expt(i) refers to the value in a state of
ShortestPathi .

Corollary. ShortestPathi for i = 1, 2 label the same nodes as
visited , once. Thus, the refinement preserves Correctness and
Termination.

Copyright CC BY–NC-SA 4.0 12

Slow Down Lemma: Proof by induction on runs

t = 0: ShortestPathi both have frontier0(i) = {source}
t ⇒ t + 1:

– ad claim 1:

• Case 1. Let v ∈ frontiert(2). Then by induction hypothesis
v ∈ frontiert ′(1) for some t ′ ≤ t .

• Case 2. Let v ∈ frontiert+1(2) \ frontiert(2).
Let u ∈ frontiert(2) be the element chosen by step t + 1 of
ShortestPath2. By case 1, u ∈ frontiert ′(1) for some t ′ ≤ t .
Then after the next step of ShortestPath1, namely
t ′ + 1 ≤ t + 1, each element of neighb(u) is visited , including
v ∈ neighb(u).
Hence, either v has been labeled as visited(1) already before step
t ′ + 1, so that v ∈ frontiert ′′(1) for some t ′′ ≤ t ′, or v is ‘last
labeled’ as visited by step t ′ + 1 of ShortestPath1, which
implies v ∈ frontiert ′+1(ShortestPath1).

Copyright CC BY–NC-SA 4.0 13

Slow Down Lemma: Proof by induction on runs (Cont’d)

ad claim 2: By definition of ShortestPath1, the following equation
holds:

frontiert+1(1) =
⋃

u∈frontiert(1)
neighb(u) \ Visitedt(1).

For every u ∈ frontiert(1) the induction hypothesis implies
u ∈ frontiert ′(2) for some t ′ ≥ t .

Let u ∈ frontiert ′(2) be chosen by ShortestPath2 in step t ′ + 1.
For each v ∈ neighb(u) \ Visitedt(1) this step yields
v ∈ frontiert ′+1(2).

Copyright CC BY–NC-SA 4.0 14

Third refinement: iterative implementation of ‘forall’

Idea: edgewise frontier propagation, implementing forall in
ShiftFrontierToNeighb(u) by an iterating submachine

initialize neighb = neighb(u) and then select one by one nodes v of
neighb to edgewise ShiftFrontierTo(v) until neighb = ∅

ShortestPath3 =

Copyright CC BY–NC-SA 4.0 15

Refinement correctness for edgewise frontier propagation

each iteration segment of successive ShortestPath3 steps which

– first choose an u ∈ frontier

– then choose successively all and only the neighbors v of u

• to apply ShiftFrontierTo(v)

corresponds and is equivalent to one ShortestPath2 step

– which applies to the same u ∈ frontier in one
ShiftFrontierToNeighb(u) step simultaneously
ShiftFrontierTo(v) for all v ∈ neighb(u)

This is an example of a (1,many) refinement, with u-dependent values
of many , defined by the graph structure:

many = 1 + outFan(u)

Corollary. The refinement of ShortestPath2 to
ShortestPath3 preserves Correctness and Termination.

Copyright CC BY–NC-SA 4.0 16

Fourth refinement: implementing data structures

ShortestPath4 refines two data structures:

frontier is refined by a queue: select1 = fst , Delete at one end and
Append at the other end

neighb is refined to a stack : select2 = top, Delete = pop

This is an example of a pure data refinement:

the steps in the runs are in 1-1-correspondence

Refinement Correctness of this 1-1 refinement boils down to the
correctness of the well-known set implementations by queues resp.
stacks.

Corollary. The data refinement of ShortestPath3 to
ShortestPath4 preserves Correctness and Termination.

Copyright CC BY–NC-SA 4.0 17

Introducing weights to measure paths frou source to u

Extend a given edge weight :E → R+ to a path weight as follows:

weight(ε) = 0,weight(pe) = weight(p) + weight(e)

minWeight(u) = inf {weight(p) | p is a path from source to u}

NB. Instead of R+, any well-founded partial order (M , <) of path
measures works which has the following properties:

there are a smallest and a largest element 0 resp. ∞
any m,m ′ ∈ M have an inf imum (greatest lower bound)

adding edge weight to path measures is monotonic wrt path measures
and distributive wrt inf , i.e. for each m,m ′ ∈ M and edge weight w :

–m < m ′ implies m + w < m ′ + w

– inf (X) + w = inf {x + w | x ∈ X }

Copyright CC BY–NC-SA 4.0 18

Fifth refinement: compute minimal path from source to u

Goal: when visiting u from source, compute also a minimal path, i.e.
of minimal minWeight(u), along the (possibly multiple) paths

by successive approximations of an upper bound upbd :NODE → R
starting with upbd(u) =∞ for every node u, except
upbd(source) = 0

Idea: Refine ShiftFrontierTo, along an edge e from u to v

trying to lower upbd(v) to upbd(u) + weight(e)

Problem: feature interaction of conflicting (not purely incremental)
requirements, namely:

each node is visited only once

compute a minimal path from source to each reachable node by
stepwise improving approximations, possibly discovering a shorter path
upon revisiting the node

Copyright CC BY–NC-SA 4.0 19

Conflict resolution: revisit nodes if it improves their upbd

Conflict resolution: Each time upbd(v), for a path from source to
v , CanBeLoweredBy a path going through an edge (u, v) from an
already visited neighbor u ∈ frontier , v is Inserted into frontier :

When v 6= source is visited for the first time, say via an already
visited neighbor node u ∈ frontier (so that upbd(u) <∞), its
upbd(v) =∞ CanBeLoweredBy updating it using
upbd(u) + weight(u, v).

When upbd(v) <∞ (so that v has already been visited) but upbd(v)
CanBeLoweredBy a path going through a neighbor node
u ∈ frontier , v is ‘revisited’

– meaning that it is Inserted once more into frontier .

Copyright CC BY–NC-SA 4.0 20

Refinement implementing conflict resolution

ShortestPath5 is ShortestPath4 refined as follows:

Add currSource := u to neighb := neighb(u) initialization

ShiftFrontierTo(v) =
if v /∈ visited then -- upon first visit upbd(v) =∞ holds
visited(v) := true
Insert(v , frontier)
LowerUpbd(upbd(v), (currSource, v)) -- yields upbd(v) <∞

-- because u ∈ frontier implies upbd(u) <∞
else

if CanBeLoweredBy(upbd(v), (currSource, v)) then
LowerUpbd(upbd(v), (currSource, v))
Insert(v , frontier) -- neighbors may have to LowerUpbd

Copyright CC BY–NC-SA 4.0 21

Meaning of LowerUpbd

CanBeLoweredBy(bd , (u, v)) iff

upbd(u) + weight(u, v) < bd -- Dijkstra’s algorithm where M = R
bd 6≤ upbd(u) + weight(u, v) -- Moore’s algorithm

LowerUpbd(bd , (u, v)) =

bd := upbd(u) + weight(u, v) -- Dijkstra

bd := inf {bd , upbd(u) + weight(u, v)} -- Moore

Remark. A further refinement step could restrict frontier to a priority
queue, selecting nodes with least upbd :

u = select1(frontier) iff forall v ∈ frontier upbd(u) ≤ upbd(v)

Copyright CC BY–NC-SA 4.0 22

Refinement is labeling correct and complete

Completeness: by definition, ShortestPath5 is a purely
incremental extension, also called conservative refinement, of
ShortestPath4.

– In fact, each ShortestPath4 step corresponds to a step of
ShortestPath5 with equivalent labeling:

• select1-steps choosing an u for the first time in frontier

• select2-steps with a first-visit application of ShiftFrontierTo

Correctness: for every pair (r4, r5) of corresponding
ShortestPathi runs (i = 4, 5),

– i.e. runs started in the same initial state and with (where
corresponding) same select ions

projecting from r5 a) select1-steps which choose an u that is for the
first time in frontier , and b) select2-steps with a first-visit application
of ShiftFrontierTo (not considering the LowerUpdb
submachine) yields r4.

Copyright CC BY–NC-SA 4.0 23

Termination of ShortestPath5

Since elements may be reinserted into frontier , to prove the termination
property it has to be shown that eventually frontier becomes empty.

Each time in mode scan an element u ∈ frontier is selected, at the end
of the iteration, when mode becomes again scan, the following holds:

either frontier is decreased by 1

– namely if for none of u’s neighbors v
CanBeLoweredBy(upbd(v), (u, v) so that the sum of upbd(v)
of u’s neighbors v remains unchanged

or the number of u’s neighbors v with upbd(v) =∞ or the sum of
upbd(v) <∞ of u’s neighbors v is decreased

– which can happen only finitely often

Copyright CC BY–NC-SA 4.0 24

Correctness of Shortest-Path-Property for Moore’s algorithm

Theorem. When ShortestPath5 terminates, for every u holds:

minWeight(u) = upbd(u)

The proof follows from two lemmata:

Lemma 1. minWeight(u) ≤ upbd(u)t holds for each u after each
step t .

Lemma 2. When ShortestPath5 terminates,
upbd(u) ≤ weight(p) holds for every path p from source to u.

In fact, let t be the last step of ShortestPath5. Then

minWeight(u) ≤ upbd(u)t -- by Lemma 1

≤ weight(p) -- by Lemma 2 for each source-to-u path p

Thus, upbd(u)t is a lower bound of weight(p) for every source-to-u
path p, therefore upbd(u)t ≤ minWeight(u), the greatest such bound.
Hence minWeight(u) = upbd(u)t .

Copyright CC BY–NC-SA 4.0 25

Proof of Lemma 1 (minWeight(u) ≤ upbd(u)t) by induction

t = 0: claim holds by definition of upbd(source) = 0 and
upbd(u) =∞ for each u 6= source

if in step t + 1 upbd(v) is updated, then to
inf {upbd(v)t , upbd(u)t + weight(u, v)}. Since minWeight(v) is a
lower bound for both values in the set (see below), it is ≤ their
greatest lower bound.

–minWeight(v) ≤ upbd(v)t holds by ind.hyp.

–minWeight(v) ≤ minWeight(u) + weight(u, v) (see below) and
ind.hyp. minWeight(u) ≤ upbd(u)t imply the claim.

•minWeight(v)
=Def inf {weight(p) | p path from source to v}
≤ inf {weight(p.(u, v)) | p path from source to u}
=Def inf{weight(p) + weight(u, v) | p path from source to u}
=Distr inf{weight(p) | p path from source to u} + weight(u, v)
=Def minWeight(u) + weight(u, v)

Copyright CC BY–NC-SA 4.0 26

Proof of Lemma 2 (upbd(u) ≤ weight(p) upon termination)

Induction on path length t :

t = 0: claim follows from upbd(source) = 0 = weight(ε)

Let p.(u, v) be any path of length t + 1.

– upbd(v) ≤ upbd(u) + weight(u, v)

• otherwise LowerUpbd(upbd(v), u) could fire

– upbd(u) ≤ weight(p) by ind.hyp.

Therefore

upbd(v) ≤ upbd(u) + weight(u, v)
≤ weight(p) + weight(u, v) // by monotonicity
= weight(p.(u, v)) // by definition of path weight

Copyright CC BY–NC-SA 4.0 27

Refinement by a rule optimization

NB. In ShortestPath5 the following equivalence holds:

visited(u) iff upbd(u) <∞
Therefore the IF-clause updates in ShiftFrontierTo(v):

if v /∈ visited then -- upon first visit upbd(v) =∞ holds

visited(v) := true Insert(v , frontier)

LowerUpbd(upbd(v), (currSource, v)) -- yields upbd(v) <∞
-- because u ∈ frontier implies upbd(u) <∞

are also performed by the updates in the ELSE-clause:

if CanBeLoweredBy(upbd(v), (currSource, v)) then

LowerUpbd(upbd(v), (currSource, v))

Insert(v , frontier) -- neighbors may have to LowerUpbd

so that the rule can be optimized to this ELSE-clause.2
2 Suggestion made by Mario Wenzel (Halle), Oct’19.

Copyright CC BY–NC-SA 4.0 28

Refinement to C++ code

It remains to instantiate data structures for measures and weights

See: K. Stroetmann: The Constrained Shortest Path Problem: A Case
Study in Using ASMs.

– J. of Universal Computer Science 3 (4), 1997.

Copyright CC BY–NC-SA 4.0 29

References

E. F. Moore: The Shortest Path Through a Maze. Proc. Intern. Symp.
on the Theory of Switching, Part II, Vol. 30 of ”The Annals of the
Computation Laboratory of Harvard University”, Cambridge, MA,
1959, Harvard University Press.

K. Stroetmann: The Constrained Shortest Path Problem: A Case Study
in Using ASMs. In: J. of Universal Computer Science 3 (4), 1997.

E. Börger and R. Stärk: Abstract State Machines. Springer 2003. See
Ch.3.2.1 for a correctness proof for Dijkstra’s algorithm
ShortestPath5.

E. Börger and A. Raschke: Modeling Companion for Software
Practitioners. Springer 2018
http://modelingbook.informatik.uni-ulm.de

Copyright CC BY–NC-SA 4.0 30

http://modelingbook.informatik.uni-ulm.de

Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the original authors are mentioned

modified slides are made available under the same licence

the (re-) use is not commercial

Copyright CC BY–NC-SA 4.0 31

