
Egon Börger (Pisa) & Alexander Raschke (Ulm)

Relaxed Shared Memory Management

User view ground model, replication policies and refined database view

Università di Pisa, Dipartimento di Informatica, boerger@di.unipi.it
Universität Ulm, Abteilung Informatik, alexander.raschke@uni-ulm.de

See Ch. 6 of Modeling Companion
http://modelingbook.informatik.uni-ulm.de
Copyright CC BY–NC-SA 4.0 1

Goal of the lecture

Illustrate the use of concurrent communicating ambient ASMs

with dynamically changing set of agents

to define ground models and their stepwise refinement

CaseStudy: noSQL database system Cassandra, exhibiting

data replication and replica distribution (hidden to the user)

various replication policies (choosable by the user)

background propagation of updates (hidden to the user)

Three models will be defined:

a user request/response pattern view (ground model ASM)

a replication policy refinement

a data center interaction view (ASM refinement)

Copyright CC BY–NC-SA 4.0 2

Consistency issue when sharing distributed replicated data

read/write consistency in ASM runs: in each step every agent
atomically reads and/or writes in its locations l well-defined unique
values

– simultaneous read/write actions of a location l are consistent

• reading l returns the value of l in the current state whereas writing
l determines the value of l in the next state

Management

– conflicts due to simultaneous writes to a location l are forbidden by
the consistency constraint on update sets

how to guarantee consistency of read/write actions for locations l with
(possibly distributed) replica l ′, l ′′, . . . which are all considered to be
legitimate copies of l?

– example: IRIW (Independent Read Independent Write)

Copyright CC BY–NC-SA 4.0 3

IRIW (Independent Read Independent Write) example

Assume the following:

four agents a1, . . . , a4 equipped with respective program

x := 1, y := 1, read(x) step read(y), read(y) step read(x)

a database with two replicas x ′, x ′′ resp. y ′, y ′′ of x , y

– a write to x resp. y triggers an immediate update of one of the
replicas, say x ′ resp. y ′, and is followed later by an internal
propagation action which performs an update also of the other replica

– a read action of x , y returns the value of one of the replicas

Then in a concurrent run of ai , started with value 0 for all replicas and
in which each agent makes once its unique move, it may happen that a3
reads x = 1, y = 0 and a4 reads x = 0, y = 1

depending on which replica is directly affected by a write/read request
and on the propagation time

Users should know whether such db inconsistencies are to be expected.

Copyright CC BY–NC-SA 4.0 4

Structure of replication-based shared data in Cassandra

data organized by relations Pi ⊆ K ai × Bci (1 ≤ i ≤ k)

– data accessed only via primary key values (in a static set K ai)

– pairs (pi , k) with k ∈ K ai represent for users a a ‘shared’ location

• with value evalS
a (pi(k)) for states S of a and agent-dependent fct

pi : K ai → Bci (NB. db-agents execute an ambient ASM)

relations horizontally fragmented via a hash fct on primary key values:
hi : K ai → [m,M] ⊆ Z with [m,M] partitioned into intervals

– i.e. [m,M] =
⋃qi

j=1 rangej (rangej1 < rangej2 for all j1 < j2)

hash fct hi yields fragments Fragj ,i = {k ∈ K ai | hi(k) ∈ rangej}
Pi stored in fragments: ri replicas of Fragj ,i in data centers d ∈ Di

– a replica of Fragj ,i is a set of all key/value pairs (k , v) with key in
Fragj ,i and (timestamped) value stored in memory (namely the data
centers below) to ‘serve as possible value of pi(k)’

Copyright CC BY–NC-SA 4.0 5

Structure of data centers in Cassandra

a data center d consists of a set of nodes, say j ′ ∈ {1, . . . , ni}, where
replicas of fragments Fragj ,i are stored via replica fcts pi ,j ,d ,j ′

– pi ,j ,d ,j ′ records the timestamped values pi ,j ,d ,j ′(k) = (v , t) stored in

d for a replica of Fragj ,i . Denote this by HoldsReplica(j ′, d , j , i).
for each relation Pi , Fragj ,i and all data centers, all replica functions
for Fragj ,i are assumed to be defined for the same keys k ∈ Fragj ,i
but may differ in their values:

– if HoldsReplica(j ′, d , j , i) and HoldsReplica(j ∗, d∗, j , i), then

• pi ,j ,d ,j ′(k) is defined if and only if pi ,j ,d∗,j ∗(k) is defined

• pi ,j ,d ,j ′(k) and pi ,j ,d∗,j ∗(k) may have different (relation or
timestamp) value

a memory system like Cassandra manages a set of data centers

– writing replicas (with fresh timestamp)

– reading replicas (to return the one with latest timestamp)

Copyright CC BY–NC-SA 4.0 6

Logical timestamps (Lamport)

Timestamps are evaluated resp. updated by a data center when it
evaluates a read request resp. receives a write request.

Thus each data center d has a logical clockd indicating the current time
at d and assumed to advance (here without further specification).

1. Timestamps are totally ordered.

2. Timestamps set by different data centers are different from each other.

3. Timestamps respect the inherent order of message passing, i. e. when
data with a timestamp t is created at d and sent to d ′, then when the
message is received, the clock at d ′ must show a time larger than t .

for synchronization purposes a data center may adjust its clock:

AdjustClock(d , t) = (clockd := t ′)
where t ′ = the smallest possible timestamp at d with t ≤ t ′

4. When a timestamp is set (except when adjusted), it is increased.

Copyright CC BY–NC-SA 4.0 7

User view of the memory system (request/response pattern)

users a interact with memory sending requests to and receiving
answers from a dedicated data center home(a) ∈ Di to

– write(pi , p) where p may have multiple key/value-pairs (bulk write)

– read(pi , ϕ) the current value of locations (pi , k) for the set of keys
k ∈ K ai which satisfy condition ϕ(k) (bulk read)

home(a) answers to a by Sending an AckFor (write(pi , p)) resp. the
current ValFor (read(pi , ϕ), ρ) of replicas in an appropriate set ρ.

User a does not see how home(a)

selects which replicas at which data centers in the cluster to read resp.
update replica values

propagates value updates and adjusts data center clocks

– only compliance with a configurable read/write policy is guaranteed

Therefore we keep this internal memory management and the read/write
policies abstract in the ground model DataCenterUserViewi .

Copyright CC BY–NC-SA 4.0 8

Definition of AnswerReadReqi

if Received(read(pi , ϕ), from a) then

forall j ∈ {1, . . . , qi} -- for each fragment choose complying replicas

choose Ci ,j ⊆ ReplicaNodesi ,j with Complies(Ci ,j , readPolicy)

let tmax (k) = -- compute most recent timestamp (per key)

max{t | pi ,j ,d ′,j ′(k) = (v ′, t) forsome v ′, (d ′, j ′) ∈ Ci ,j}
-- collect most recent defined values in j -th fragment

let ρi ,j = {(k , v) | k ∈ Fragj ,i ↑ ϕ and v 6= null and

pi ,j ,d ′,j ′(k) = (v , tmax(k)) forsome (d ′, j ′) ∈ Ci ,j}
let ρ =

⋃qi
j=1 ρi ,j -- collect values from all fragments

Send(ValFor (read(pi , ϕ), ρ), to a) -- current (pi , ϕ)- values

Consume(read(pi , ϕ), from a)

where ReplicaNodesi ,j = -- NB. Data centers have different nodes

{(d ′, j ′) | d ′ ∈ Di and 1 ≤ j ′ ≤ ni and HoldsReplica(j ′, d ′, j , i)}
Copyright CC BY–NC-SA 4.0 9

Definition of PerformWriteReqi

if Received(write(pi , p), from a) then

let tcurrent = clockself -- retrieve current data center time

forall j ∈ {1, . . . , qi} -- for each fragment choose complying replicas

choose Ci ,j ⊆ ReplicaNodesi ,j with Complies(Ci ,j ,writePolicy)

forall (d ′, j ′) ∈ Ci ,j -- for each chosen d ′ and replica

forall (k , v) ∈ p with hi(k) ∈ rangej -- for each p-value

forall v ′, t with pi ,j ,d ′,j ′(k) = (v ′, t) and t < tcurrent

pi ,j ,d ′,j ′(k) := (v , tcurrent) -- update older db value

Propagate(i , j , k , v , tcurrent ,Ci ,j)

-- propagate p-value to non-chosen replicas

if clockd ′ < tcurrent then AdjustClock(d ′, tcurrent)

Send(AckFor (write(pi , p)), to a)

Consume(write(pi , p), from a)

Copyright CC BY–NC-SA 4.0 10

Definition of system internal Propagate(i , j , k , v , t ,C)

Propagate(i , j , k , v , t ,C) =

let b = new (Agent) -- b executes asynchronously

pgm(b) :=

forall (d ′, j ′) ∈ ReplicaNodesi ,j \C -- not yet considered replicas

forall v ′, t ′ with pi ,j ,d ′,j ′(k) = (v ′, t ′) and t ′ < t

pi ,j ,d ′,j ′(k) := (v , t) -- update older db value

if clockd ′ < tcurrent then AdjustClock(d ′, t)

Delete(b,Agent)

NB. In the ground model the propagation is formulated as happening in
one step, in parallel for all involved replicas, whereafter the propagation
agent is not needed any more.

Copyright CC BY–NC-SA 4.0 11

User request/response pattern view of the memory system

DataCenterUserViewi =

AnswerReadReqi

PerformWriteReqi

Then ClusterUserViewi is the concurrent ASM of all data center
agents d ∈ Di with pgm(d) = DataCenterUserViewi .

NB. In a concurrent run of Users and ClusterUserViewi , not
furthermore restricted simultaneous read/write requests by different
users may yield conflicts and/or inconsistencies, depending on

timing issues: for the communication, the reads/writes of memory
locations, the propagation of writes

the replication policies

Copyright CC BY–NC-SA 4.0 12

Detailing replication policies

Cassandra uses replication policies to determine tunable consistency , i.e.
the degree of consistency which can be guaranteed for read/write
actions in concurrent runs.

Technically, readPolicy and writePolicy are used to determine how
many and where replicas are to be taken into account to perform a user
requested db read or write

i.e. they are about the cardinality of the selected subsets
Ci ,j ⊆ ReplicaNodesi ,j and about where—at which data
centers—replicas are chosen, e.g.

– cardinality conditions: one, two, three, all

– locality contraint: pair (num,At(d)) of the number of replica nodes
and the data center d where they have to be taken

– a quorum relation between Ci ,j and ReplicaNodesi ,j

Copyright CC BY–NC-SA 4.0 13

Definition of Complies

Complies(C , policy) iff forsome (i , j)

C ⊆ ReplicaNodesi ,j and

C = ReplicaNodesi ,j if policy = all

|C | = num if policy = num

|C | = num and C = C ↑ d if policy = (num,At(d))

q · |ReplicaNodesi ,j | < |C | if policy = quorum(q)

where

num ∈ {one, two, three} and 0 < q < 1

C ↑ d = {(d ′, j ′) ∈ C | d ′ = d} -- replicas taken only in d

For exl. q = 1
2 expresses that the majority of replicas is considered.

Copyright CC BY–NC-SA 4.0 14

2 extreme consistency cases for ClusterUserViewi

If readPolicy = writePolicy = all , then by the atomicity of ground
model actions one can prove:

– for every read request the unique freshest replica value is returned,
i.e. the one with latest timestamp in the db state in which the
request is elaborated

– if one (and simultaneously no other) data center in a cluster receives
a write request, this request triggers an update of all replicas in the
db to the requested new value (NB. no propagation happens)

under the one policy different replicas may have different values so
that inconsistency phenomena can occur, as in the above Iriw exl.

For a rigorous definition and detailed analysis of other forms of
consistency, achievable in the Cassandra ground model with appropriately
restricted read/write policies, see the paper in the references below.

Copyright CC BY–NC-SA 4.0 15

Data center interaction to perform db read/write actions

Idea: refine each atomic ground model step by letting home(a)

DelegateExternalReqi to each involved data center d ′ for the
work to be done at its local replica nodes (d ′, j ′) ∈ Ci ,j

–Forwarding the received request from home(a) to every d ∈ Di

– letting each data center ManageInternalReqi asynchronously

trigger (as part of the DelegateExternalReqi step) an instance
of a ManageResponseCollectioni process to asynchronously

– collect the received local responses

– send the final response from home(a) to the requestor

• once the collected local responses are Sufficient for the underlying
read/write policy

Copyright CC BY–NC-SA 4.0 16

Formal definition of ClusterManagementi

Therefore the refinement ClusterManagementi of
ClusterUserViewi is defined as concurrent ASM of

the data center agents d ∈ Di , each equipped with program
DataCenterManagementi defined by:

DataCenterManagementi =
DelegateExternalReqi
ManageInternalReqi

the still alive response collector agents the data center agents create
and equip with program ManageResponseCollectioni

– which is defined as part of DelegateExternalReqi

upon receiving a request

Copyright CC BY–NC-SA 4.0 17

The functionality of DelegateExternalReqi

When a request from some user a is Received , the receiving data center
agent performs two actions:

Forward the reqest to all data centers d ∈ Di for local handling

– with info on current data center time and where to report the locally
computed answer

• computed on the basis of the replica data kept in the nodes of d

Create a response collector agent c and Initialize it

– enabling c to ManageResponseCollection asynchronously

• including counting the number of locally inspected replicas, as
reported from the data center agents, and needed to perform the
global compliance check

Copyright CC BY–NC-SA 4.0 18

Definition of DelegateExternalReqi

DelegateExternalReqi =

if Received(req , from a) then

let tcurrent = clockself -- retrieve current data center time

let c = new (Agent) -- create response collector

Initializei(c, (req , a, self)) -- and initialize it

Forwardi(req , c, tcurrent) -- delegate response

Consume(req , from a)

where

Forwardi(r , c, t) = -- delegate response throughout the cluster

forall d ∈ Di do Send((r , c, t), to d) -- including d = self

req ∈ {read(pi , ϕ),write(pi , p)} forsome ϕ, p (with fixed pi)

Copyright CC BY–NC-SA 4.0 19

Information needed to ManageResponseCollection

local record of the user, its request, the mediating data center d and
of the set ReadVal of values received for a read req from

a counter for the number of inspected fragment replicas

– needed for the policy compliance check

Initializei(c, (r , usr , d)) =

pgm(c) := ManageResponseCollectioni

ReadValc := ∅ -- initialize set where to collect responses

forall d ∈ Di forall 1 ≤ j ≤ qi

countc(j , d) := 0 -- inspected Fragj ,i -replicas at d

countc(j) := 0 -- inspected Fragj ,i -replicas

requestc := r -- record user request

requestorc := usr -- record user

mediatorc := d -- record home(usr)

Copyright CC BY–NC-SA 4.0 20

Management of Internal Requests

ManageInternalReqi =

if Received(req , c, t) then

HandleLocallyi(req , c, t)

Consume(req , c, t)

The ground model read/write actions are refined at each data center d
by HandleLocallyi(req , c, t) which

performs the read/write action only for the nodes of d

performs the read/write action for all nodes which are Alive in d

includes into the response the number of locally inspected nodes

– because the policy compliance can only be performed globally, at the
cluster level (here by the response collector c)

Therefore there are two versions HandleLocallyi(read(pi , ϕ), c, t)
and HandleLocallyi(write(pi , p), c, t) to define.

Copyright CC BY–NC-SA 4.0 21

HandleLocallyi(read(pi , ϕ), c, t)

let d = self ∈ Di -- at the local data center d

forall j ∈ {1, . . . , qi} -- for each fragment

let Gi ,j ,d = {j ′ | HoldsReplica(j ′, d , j , i) and Alive(j ′, d)}
-- inspect replicas at all Alive d -nodes

let tmax (k) = -- to compute their most recent timestamp

max{t | pi ,j ,d ,j ′(k) = (v ′, t) forsome v ′, j ′ ∈ Gi ,j ,d}
let ρi ,j ,d = {(k , v , tmax (k)) | k ∈ Fragj ,i ↑ ϕ and v 6= null and

pi ,j ,d ,j ′(k) = (v , tmax(k)) forsome j ′ ∈ Gi ,j ,d}
-- collect at d most recent defined values in j -th fragment

let ρd =
⋃qi

j=1 ρi ,j ,d -- collect those values from all fragments

let x d = (|Gi ,1,d |, . . . , |Gi ,qi ,d |) -- count inspected replicas

Send(LocalValFor (read(pi , ϕ), ρd , x d), to c)

-- send local values to response collector

Copyright CC BY–NC-SA 4.0 22

HandleLocally(write(pi , p), c, t)

let d = self ∈ Di -- at the local data center d

forall j ∈ {1, . . . , qi} -- for each fragment

let Gi ,j ,d = {j ′ | HoldsReplica(j ′, d , j , i) and Alive(j ′, d)}
-- inspect replicas at all Alive d -nodes

forall j ′ ∈ Gi ,j ,d -- for each of those replicas

forall (k , v) ∈ p with k ∈ Fragj ,i -- for each update value in p

if pi ,j ,d ,j ′(k) = (v ′, t ′) with t ′ < t forsome v ′, t ′

then pi ,j ,d ,j ′(k) := (v , t) -- update older values to p-value

if clockd < t then AdjustClock(d , t)

let x = (|Gi ,1,d |, . . . , |Gi ,qi ,d |) -- count inspected replicas

Send(LocalAckFor (write(pi , p), x), to c)

-- send local ack to response collector

Copyright CC BY–NC-SA 4.0 23

Response collection and policy check

ManageResponseCollectioni must

collect received internal local read/write responses

send the final read/write response once the local responses collected so
far turn out to be ResponsesSufficientFor the given policy

ManageResponseCollectioni =

CollectLocalReadResponsesi

SendReadResponse

CollectLocalWriteResponsesi

SendWriteResponse

Copyright CC BY–NC-SA 4.0 24

CollectLocalWriteResponses

Collecting write responses means to RefreshReplicaCount

NB. Write requests trigger only an ack, no values are sent back

CollectLocalWriteResponsesi =

if Received(LocalAckFor (write(pi , p), x), from d) then

RefreshReplicaCount(x , d)

Consume(LocalAckFor (write(pi , p), x), from d)

where

RefreshReplicaCount(x , d) =

let (x1, . . . , xqi) = x -- per fragment: replicas inspected at d

forall j ∈ {1, . . . , qi} -- for each fragment

count(j) := count(j) + xj -- inspected Fragj ,i -replicas

count(j , d) := count(j , d) + xj

-- inspected Fragj ,i -replicas at d

Copyright CC BY–NC-SA 4.0 25

CollectLocalReadResponses

CollectLocalReadResponses =

if Received(LocalValFor (read(pi , ϕ), ρ, x), from d) then

forall k if thereissome (k , v , t) ∈ ρ then -- for each key k

let (k , v , t) ∈ ρ -- with received local value v

if thereisno (k , v ′, t ′) ∈ ReadVal -- if key k new for collection

then Insert((k , v , t),ReadVal) -- collect received value

else let (k , v ′, t ′) ∈ ReadVal -- for k -value v ′ in collection

if t ′ < t then -- with older timestamp

Delete((k , v ′, t ′),ReadVal) -- replace old value

Insert((k , v , t),ReadVal) -- by new value

RefreshReplicaCount(x , d)

Consume(LocalValFor (read(pi , ϕ), ρ, x), from d)

Copyright CC BY–NC-SA 4.0 26

SendRead/WriteResponse if policy satisfied

SendReadResponse =

if ResponsesSufficientFor (readPolicy) and

IsReadReq(requestself)

then let ρ = {(k , v) | (k , v , t) ∈ ReadVal forsome t}
Send(ValFor (requestself, ρ), -- send the collected values

from mediatorself, to requestorself)

Delete(self,Agent) -- collector kills itself

SendWriteResponse =

if ResponsesSufficientFor (writePolicy) and

IsWriteReq(request(self)) then

Send(AckFor (requestself), -- send an acknowledgement

from mediator (self), to requestorself)

Delete(self,Agent)

Copyright CC BY–NC-SA 4.0 27

The meaning of ResponsesSufficientFor (policy)

ResponsesSufficientFor (num) iff

forall 1 ≤ j ≤ qi count(j) ≥ num -- for each fragment

NB.≥ (instead of =) is due to the concurrency: when testing
ResponsesSufficientFor , already more than num answers may have
been received.

ResponsesSufficientFor (all) iff

forall 1 ≤ j ≤ qi count(j) = |ReplicaNodesi ,j |
ResponsesSufficientFor (quorum(q)) iff

forall 1 ≤ j ≤ qi q · |ReplicaNodesi ,j | < count(j)

where

num ∈ {one, two, three} and 0 < q < 1

Copyright CC BY–NC-SA 4.0 28

A note on Alive replica nodes

Without restrictig in the policy definition the set ReplicaNodesi ,j to
Alive nodes, the delegate can send its answer only if all relevant
replica nodes are Alive during the response providing process.

This would contradict however the spirit of using replicas, namely to
be on the safe side even when some replica holding node happens to
be unreachable.

To describe a satisfactory solution of the problem more information is
needed on how not Alive nodes are treated for the various policies.

NB. A typical meaning of being Alive is that a node in a data center
is accessible and ‘replies fast enough’ to the request, providing the
values they record.

Copyright CC BY–NC-SA 4.0 29

Relating ClusterUserViewi and ClusterManagementi

For each user request to its home data center in a concurrent run with
the abstract machine ClusterUserViewi

– where the response is computed using the abstract program
DataCenterUserViewi

one can construct an equivalent interaction (i.e. with same read/write
effect) between the user and its home data center in a concurrent run
with the refined machine ClusterManagementi

– where the response is computed interactively by the data center
agents d ∈ Di using the refined programs
DataCenterManagementi

The inverse holds only under additional assumptions on the
serializability of read/write requests and answers, using some form of
transaction

– see the example below

– for a detailed analysis see the references

Copyright CC BY–NC-SA 4.0 30

An (undesirable?) run example for ClusterManagementi

let replicas x1 at d1 and x2 at d2 of x be initialized by 0

assume write policy all and read policy one

let a1 issue a write request x := 1 and thereafter a2 issue two
successive read requests for x

The following ClusterManagementi scenario one wouldn’t expect
from the ground model ClusterUserViewi is possible:

the write request by a1 leads to

– an update of x1 to 1 before a2 issues its first read request for x

• which is answered by the value of replica x1, namely 1

– a later update of x2 to 1 after the second read request has been
answered

• namely by the initial value 0 of replica x2
although meantime no new write request has been sent.

Copyright CC BY–NC-SA 4.0 31

Copyright CC BY–NC-SA 4.0 32

Copyright CC BY–NC-SA 4.0 33

References

Klaus-Dieter Schewe and Andreas Prinz and Egon Börger:
Concurrent Computing with Shared Replicated Memory.

– Springer LNCS 11815 (2019) 211-228

– extended version in CoRR, vol. abs/1902.04789 (2019)
http://arxiv.org/abs/1902.04789

eprint arxiv.org/abs/1902.04789

Apache Cassandra 2.0—Documentation (2016)
http://cassandra.apache.org

Egon Börger and Alexander Raschke: Modeling Companion for
Software Practitioners. Springer 2018
http://modelingbook.informatik.uni-ulm.de

Copyright CC BY–NC-SA 4.0 34

http://arxiv.org/abs/1902.04789
http://cassandra.apache.org
http://modelingbook.informatik.uni-ulm.de

Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the original authors are mentioned

modified slides are made available under the same licence

the (re-) use is not commercial

Copyright CC BY–NC-SA 4.0 35

