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Refinement concept

Refinement is a general methodological principle:

piecemeal de-/composition of a system into/from constituent parts
which are treated separately to manage complexity

goes together with the inverse process of abstraction

ASM refinement notion exploits the arguably most general ‘freedom of
abstraction’ (read: availability of arbitrary structures to directly reflect
states and operations) offered by ASMs: it is NOT limited by the
principle of substitutivity which drives traditional refinement notions:

The intuition behind refinement is just the following: Principle of
Substitutivity: it is acceptable to replace one program by another,
provided it is impossible for a user of the programs to observe that
the substitution has taken place. [Derrick&Boiten 2001, pg.47]

Why restriction to not-observable substitutions?
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Motivation for the ASM refinement concept

ASM refinement notion is problem-oriented. Its goal is to:

support divide-and-conquer techniques for system design and analysis

– without privileging one to the detriment of the other

• traditional approaches link design and verification (sic) by relating
program constructs and proof principles at the price of restricting
the design space (ADT, Z, CSP, B,...)

allow the designer to tailor refinement/abstraction pairs which

– faithfully reflect a design decision or reengineering idea

– provide means to justify an implementation or abstraction as
‘correct’ (via verification or simulation)

– support design communication, design reuse and system
maintenance thru accurate, precise, indexed and searchable docu

NB. Development of the ASM refinement method was driven by
practical refinement tasks occurring in real-life system development
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Main usages of ASM refinements: early examples

capture orthogonalities by modular (maintainable) components

– e.g. Production Cell (model checked), Steam Boiler (refined to C++
code), pipelining RISC DLX and APE architecture

construct hierarchical levels for

– horizontal piecemeal extensions and adaptations (design for change)

• e.g. of ISO Prolog model by constraints (Prolog III), polymorphism
(Protos-L), narrowing (Babel), o-orientation (Müller), parallelism
(Parlog, Concurrent Prolog), abstract execution strategy (Gödel)

– (provably correct) vertical stepwise detailing of models (design for
reuse) to their implementation, e.g. model chains leading from

• Prolog to WAM (13 levels), Occam to Transputer (15 levels), Java
to JVM (5 horizontal, 4 vertical levels), C# to CLR

reuse justifications (proofs) for system properties

– e.g. reusing Prolog-to-WAM compiler correctness proof for IBM’s
CLP(R)-to-CLAM, Protos-L-to-PAM, etc.
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Early examples for reuse of ASM refinement hierarchies

NB. Both models and proofs could be reused (see references below).
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Defining ASM refinement: freedom to choose notions of:

abstract/refined state

states of interest and correspondence bw pairs (S , S∗) of
abstract/refined states of interest

abstract/refined computation segments of m/n single abstract/refined
steps τi/σj leading from/to corresponding states of interest

locations of interest and corresponding abstract/refined locs of interest

equivalence of values in corresponding locations of interest

σ1 · · · σn︸ ︷︷ ︸
n steps of M ∗

-State S∗ S∗′

6

?

≡
6

?

≡

-State S S ′

m steps of M︷ ︸︸ ︷
τ1 · · · τm
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ASM refinement scheme a meta-framework for refinements

ASM refinement scheme1 combines change of signature (correspondence
of states/locations and equivalence of data) and change of control (flow
of operations in corresponding computation segments), thus generalizing

pure (1, 1) data refinements (e.g. VDM, Z, B)

opn (1, n)-refinements with fixed n (e.g. Z, Object-Z, B)

purely sequential or structural-equivalence view of pgs with
corresponding ops in same places (ADT,Z)

simple input/output or pre-/post-state view (‘observations’) of pgs

and avoiding

pure logic or proof-rule oriented view, tailored to fit proof principles
(which typically restrict design space)

– see refinement book by de Roever&Engelhardt

global view of ops (avoids frame pblm when combining local effects)

1 Above figure from AsmBook, c© 2003 Springer-Verlag Berlin Heidelberg, reused with permission
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Syntactical orientation in traditional refinement notions

logic or proof-rule orientation, tailored to fit proof principles

– spec perceived as a (huge!) logical expression

– implementation understood as implication

– composition defined as conjunction

possibly restricts the design space

– e.g. refinements should be pre-congruences: for every context C:
x ≤ y implies C [x ] ≤ C [y ]. This can be achieved for example by
monotonicity of pgm constructors wrt refinement.

• commits to uniform context-independent ‘algebraic’ refinements

– e.g. operation refinement by combining multiple operations
‘conjunctively’ or ‘disjunctively’ (‘alphabet translation’)
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Linking program constructs and proof principles in B

Exl: machine inclusion concept (B-Book pg.317)

Let M include M ′. Then ‘at most one operation of the included
machine can be called from within an operation of the including
machine. Otherwise we could break the invariant of the included
machine.’

Let M ′ have the following operations, satisfying the invariant v ≤ w :

– increment = (If v < w then v := v + 1)

– decrement = (If v < w then w := w − 1)

Let M include M ′ and contain the following operation:

– If v < w then increment || decrement

Then the invariant v ≤ w is broken by M for w = v + 1

NB. The ASM method allows parallel invocations of submachines (at the
price of having to care about the correctness proofs)
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Linking program constructs and proof principles in CSP

Refining processes by adding assignment is restricted to certain
assignments

Hoare CSP Book 1985, pg. 188

Exl. When two processes P and Q are put into parallel, it is required
that the variables P assigns to are disjoint from the variables of Q :
Write(P) ∩ Var (Q) = ∅

Otherwise the CSP laws would not work (Sic)
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Correctness/Completeness of ASM refinements

Fix any notions ≡ of equivalence, initial and final (if any) states.

M ∗ is a correct refinement of M (‘partial correctness’) iff for each
M ∗-run S∗0 , S

∗
1 , . . . there are an M -run S0, S1, . . ., index sequences

i0 < i1 < . . . , j0 < j1 < . . . (of corresponding states of interest) s.t.

initial states are corresponding states of interest: i0 = j0 = 0

equivalence of corresponding states of interest: Sik ≡ S∗jk for each k

either both runs terminate and their final states are the last pair of
corresponding states of interest, or

both runs and both sequences i0 < i1 < . . ., j0 < j1 < . . . are infinite

NB. The M ∗-run S∗0 , S
∗
1 , . . . is said to simulate the M -run S0, S1, . . ..

Wlog bw two sequence elements there are no other equivalent states.

M ∗ is called a complete refinement of M (‘total correctness’) iff M is a
correct refinement of M ∗.
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Rational of stepwise refinement for proving system properties

Overall task (0): show that an implementation S∗ satisfies a desired
property P∗.

For a complex system this task may be impossible to be tackled at a
single blow.

Decompose (0) into 3 subtasks which usually are more
manageable:

1. build an abstract model S ,

2. prove a possibly abstract form P of the property in question to hold
under appropriate assumptions for S ,

3. show S to be correctly refined by S∗ and the assumptions to hold in
S∗.
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Remarks on some ASM refinement types

local data equivalence often accumulates to a notion of equivalence of
corresponding states of interest

refinement correctness and completeness for terminating runs imply
the equivalence of any input/output behavior (called bisimulation or
interpreter equivalence)

size of m and n in (m, n)-refinements is allowed to dynamically
depend on the state

– in Java exception handling correctness proof, m is determined by the
number of Java statements jumped over during the search for the
exception handler

by a theorem of Schellhorn, every (m, n)-refinement with n > 1 can
be reduced to (m, 1)-refinements—typically at the price of having more
involved equivalence notions which typically complicate the proofs
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Conservative ASM refinements

Conservative extension: purely incremental refinement, analogous to
conservative theory extensions in logic.

Typically used to introduce new behavior in a modular fashion.

ConservativeExtension(M ,NewCase,NewMachine) =

if NewCase then NewMachine // additional new behavior

else M // given machine with ‘old’ behavior

NB. Conservativity simplifies both design and correctness proofs.
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Conservative ASM refinements: JBook example

refinement of Java interpreter by a proven to be correct exception
handling mechanism

incorporation of a bytecode verifier into the JVM interpreter
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Procedural ASM (Submachine) refinements

(1, n)-refinements replacing in a given machine M one submachine P by
another (usually more complex) machine Q .

ProceduralExtension(M ,P ,Q) = M [P/Q ]

NB. Substitution does not imply the principle of substitutivity:

depending on the granularity of the submachine, a refined machine
typically provides new details or features one wants to see

even for n = 1 Q may be a parallel composition of multiple machines
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Examples of ASM submachine refinements

(1, n)-refinements with n > 1 in compiler verification when replacing a
source code instruction by a chunk of target code (e.g. unify
refinement in Prolog-to-WAM with a priori unbounded n)

refinement of P by a turbo ASM (built from basic ASMs using seq
and iterate)

refining a rule in control-state transition Fsm(i , rule, j ) by a
control-state machine diagram M to Fsm(i ,M , j )2

refining an atomic action by multiple actions which are executed in an
asynchronous manner (exl: refinement of Occam process
communication by an asynchronous channel communication)

k1 jirule ji knby . . .

2 Figure from AsmBook, c© 2003 Springer-Verlag Berlin Heidelberg, reused with permission
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Data refinement

typically (1, 1)-refinements where abstract states/rules are mapped to
concrete ones s.t. the effect of an abstract/concrete operation on
abstract/concrete data types is the same

basis of numerous algebraic and set-theoretic refinement notions (e.g.
VDM, Z, B), tailored to provide ‘unchanged’ properties for
corresponding operations with ‘unchanged’ signature

frequently used exl: ASM instantiation where ASM rules remain
unchanged but abstract (mostly external) auxiliary functions/
predicates occurring in them are specified further

– particularly useful for transition from a use case model with abstract
(symbolic) rules to a model which assigns a state transformation
meaning to the rule names

Copyright CC BY–NC-SA 4.0 18



Exl: Backtrack scheme for tree generation/traversal

Backtrack = Ramify par Select where

Ramify = (if mode = ramify) then

let k = |alternatives(Params)| o1, . . . , ok = new (NODE )

candidates(currnode) := {o1, . . . , ok}

forall 1 ≤ i ≤ k
parent(oi) := currnode

env (oi) := i -th(alternatives(Params))

mode := select
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Backtrack scheme for tree generation/traversal (Cont’d)

Select =

if mode = select then

if candidates(currnode) = ∅
then Back

else

TryNextCandidate

mode := execute
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Backtrack scheme for tree generation/traversal (Cont’d)

Back =

if parent(currnode = root)

then mode := Stop

else currnode := parent(currnode)

TryNextCandidate =

currnode := next(candidates(currnode))

Delete(next(candidates(currnode)), candidates(currnode))

NB. Scheme data refinable by instantiating its external fcts:

alternatives determines the solution space

next determines the order for trying out the alternatives
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Data refined Backtrack in logic programming

backtrack engine for ISO Prolog : exec engine switches from ramify to
select

– alternatives = procdef (stm, pgm)

• yields the sequence of clauses in pgm to be tried out in this order
to execute the current goal stm

– next = head

• reflects depth-first left-to-right tree traversal strategy of ISO Prolog

constraint logic programming CLP(R): dto with CLP(R) exec engine
extending procdef by param for current constraint set

functional logic language Babel: dto with Babel exec engine and
alternatives = fundef (currexp, pgm)

– fundef yields the list of defining rules provided in pgm for the outer
function of currexp (to reduce it to normal form by narrowing)
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Data refined Backtrack in context-free grammars

context-free grammar : generation of leftmost derivations

– alternatives(currnode,G) yields conclusion of a G-rule
X → Y1, . . . ,Yk where X labels currnode

• env records node label (variable X or terminal a), next = fst

Execute(G) = if (mode = execute) then

if env (currnode) ∈ VAR // tree expansion

then mode := ramify else

output := output ∗ env (currnode) // extract yield

currnode := parent(currnode) // continue derivation

mode := select

NB. further data refinements capture attribute grammars and tree
adjoining grammars, generalizing Parikh’s analysis of context free
languages by ‘pumping’ of context free trees
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Mealy automata refinement of TuringLikeMachine

A TuringLikeMachine is a set of rules of form:

Fsm(i , if Cond then Action, j )

= if mode = i and Cond then Action par mode := j

where // parameterization by functions mem, env , pos

Cond = Cond(mem(env (pos)))

Action = Action(mem(env (pos)), pos)

Instantiations of mem, env , pos and of Cond ,Update yield:

Mealy automaton: mem = input function, env = identity

Cond iff mem(pos) = a // reading head on input tape pos ition
Action = pos := pos + 1 // shift input reading head to the right

2-way Mealy automaton: dto with Action = pos := pos +move

Eilenberg’s X-machine: dto, adding to Action updates
currstate := f (currstate) for a global state function currstate
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FSM and Pushdown refinements of TuringLikeMachine

Moore automaton: refine Mealy by additional output function and
additional updates output := b in Action

– If output is viewed as tape, add shifting the writing head position
posoutput := posoutput + 1 to Action

Pushdown automaton: refine Mealy by adding the stack function with

Cond iff [in = a] ∧ [top(stack ) = b] // [ ] optional
Action = stack := push(w , [pop](stack ))

Turing machine: refine 2-way Mealy with mem = tape and additional
update tape(pos) := b in Action

Interactive TM (Wegner): refine TM by additional param input for all
fcts

refine input/output from letters a, b to words, streams, trees, etc.
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Schellhorn’s refinement correctness pf modularization

Idea: decompose commuting diagram into more basic diagrams with end
points s , s∗ which satisfy an invariant ≈ implying the to be established
equivalence ≡.

Method: follow the two runs, for each pair of corresponding states—not
both final—satisfying ≈, looking for a successor pair s ′, s∗′ (of
corresponding states satisfying ≈).

Run extension may be possible for both or only for one run: 3 diagram
types3

. . .

~

. . .. . .

. . .

~
~~ ~~ ~~

s’

*’s*s

s

*’s*s

s

*s

s’s

3 Figure from AsmBook, c© 2003 Springer-Verlag Berlin Heidelberg, reused with permission
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Schellhorn’s basic diagram types

. . .

~

. . .. . .

. . .

~
~~ ~~ ~~

s’

*’s*s

s

*’s*s

s

*s

s’s

(m, 0)-triangles: computation segments where only the abstract run
makes progress performing a positive number m of steps to reach an
s ′ ≈ s∗,
(0, n)-triangles: computation segments where only the concrete run
makes progress performing a positive number n of steps to reach an
s∗′ ≈ s ,

(m, n)-trapezoids: representing a computation segment which leads in
m > 0 steps to an s ′ and in n > 0 steps to an s∗′ such that s ′ ≈ s∗′.
Any of the three possible subcases m < n, m > n (typical for
optimizations) or m = n is allowed here.
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Defining the Forward Simulation Condition FSC

for every pair (s , s∗) of states, if s ≈ s∗ and not both are final states,
then

either the abstract run can be extended by an (m, 0)-triangle leading
in m > 0 steps to an s ′ ≈ s∗ satisfying (s ′, s∗) <m0 (s , s

∗) for a
well-founded relation <m0 limiting successive applications of
(m, 0)-triangles,

or the refined run can be extended by a (0, n)-triangle leading in
n > 0 steps to an s∗′ ≈ s satisfying the condition (s , s∗′) <0n (s , s∗)
for a well-founded relation <0n limiting successive applications of
(0, n)-triangles,

or both runs can be extended by an (m, n)-trapezoid leading in m > 0
abstract steps to an s ′ and in n > 0 refined steps to an s∗′ such that
s ′ ≈ s∗′.
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Decomposition Thm for ASM Refinement Diagrams

M ∗ is a correct refinement of M with respect to an equivalence notion
≡ and a notion of initial/final states if there is a relation ≈ (a coupling
invariant) such that

1. the coupling invariant implies the equivalence,

2. each refined initial state s∗ is coupled by the invariant to an abstract
initial state s ≈ s∗,

3. the forward simulation condition FSC holds.

NB. Thm proved by Schellhorn (1997) using KIV as part of the
KIV-verification of the Prolog-to-Wam refinement hierarchy
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Further examples of ASM refinements

See lectures on ASM refinement examples, section AdditionalMaterial:

http://modelingbook.informatik.uni-ulm.de
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