
Egon Börger (Pisa)

Recursive Abstract State Machines

or

Concurrent ASMs with Partial Order Runs

Università di Pisa, Dipartimento di Informatica, boerger@di.unipi.it

See E. Börger and K.-D. Schewe: A Behavioural Theory of Recursive
Algorithms. (2019)
Copyright CC BY–NC-SA 4.0 1



Goal of the lecture

Explain the relation between

partial order distributed ASM runs (Gurevich 1995)

concurrent ASM runs (Börger/Schewe 2016)

The analysis of this relation led us to

define recursive ASMs (intrinsically finitely composed of ‘sequential’
ASMs),

show them to capture recursive algorithms,

relate their runs to partial order runs by the following theorem:

Theorem (Börger/Schewe). Finitely-composed concurrent ASMs C
with sequential (possibly non-deterministic) components for which all
concurrent C-runs are definable by partial-order runs have a behavior
that is equivalent to that of recursive ASMs, and vice versa.

NB. Only knowledge of the definition of single-agent ASMs is assumed.

Copyright CC BY–NC-SA 4.0 2



The history behind: what triggered the investigation

Blass and Gurevich used what are called ‘partial order runs of
distributed ASMs’ to describe recursive algorithms by ASMs

– see Bulletin of the EATCS, 77 (2002), 96-119.

Börger/Schewe defined a notion of concurrent ASM runs (2016) which
is more general than that of partial order distributed ASM runs.

A closer investigation revealed that (roughly speaking) recursive ASMs
are exactly those finitely composed multi-agent ASMs (with sequential
components) whose concurrent runs are definable as partial order runs.

The investigation was carried out in more general terms extending

– Gurevich’s Sequential ASM Thesis by a Recursive ASM Thesis

– sequential ASMs and their runs to recursive ASMs and their runs.

Copyright CC BY–NC-SA 4.0 3



Recap of Gurevich’s postulates for ‘sequential’ algorithms

To characterize recursive algorithms we incorporate call steps into the
one-step transition for non-deterministic sequential (nd-seq) algorithms.

Branching Time. One-step state transition relation τ ⊆ S × S with
a set of initial states I ⊆ S. (NB. Gurevich used functions τ .)

Runs = sequences of states related by τ , starting in an I-state.

Abstract State. States are structures (interpretations of a finite
signature Σ of function symbols f over a base set U , called universe).

View a state S as set of memory locations (f , args) with a value
f (args) ∈ U . State changes come via sets of updates ((f , args), v ).

S and I are closed under isomorphisms. τ does not modify the
universe U and is carried over by isomorphisms.

Bounded Exploration. A finite witness set W of ground terms
(over Σ) s.t. for all states S , S ′, steps τ (S , S ′) depend only on the
interpretation of W in S .

Copyright CC BY–NC-SA 4.0 4



What is the intuition underlying recursive steps?

A recursive algorithm starts with a main program. This program and its
subprograms have the ability to

perform recursive call steps, i.e.

– to trigger for some input an instance of an algorithm

• among a fixed maximal number of algorithms, including itself

– and to remain waiting until the callee has computed, independently,
an output for the given input

issue in one step possibly multiple calls

– a fixed maximal number of finitely many synchronous parallel calls

– of callees which perform their subcomputations independently of
each other and of the caller (modulo the input/output relation)

• think of Fibonacci, mergesort, etc.

To capture this intuition we must characterize the input/output call
relationship and encapsulate subcomputations of callees.

Copyright CC BY–NC-SA 4.0 5



The call relationship for input/output algorithms

An i/o-algorithm A is a nd-seq algorithm with call steps satisfying the
Call Step Postulat below and with signature Σ = Σin ∪Σloc ∪Σout
(disjoint union) satisfying the following input/output assumptions:

1. Input locations of A are only read by A, but never updated by A.

2. Output locations of A are never read by A, but can be written by A.

3. Any initial state of A depends only on its input locations.

A call relationship holds for two i/o-algorithms Ap (parent) and Ac

(child) iff they share only in/out locations:

ΣA
c

in ⊆ ΣA
p
. Furthermore, Ap may update but never reads input

locations of Ac.

ΣA
c

out ⊆ ΣA
p
. Furthermore, Ap may read but never updates output

locations of Ac.

ΣA
c

loc ∩Σ
Ap

= ∅ (no other shared locations).

Copyright CC BY–NC-SA 4.0 6



The Call Step Postulate

When a parent i/o-algorithm p calls a finite number of child
i/o-algorithms c1, . . . , cn , a call relationship holds between the caller
and each callee, which are recorded in a set CalledBy(p).

The caller activates a fresh instance of each callee ci so that they can
start their computations.

These computations are independent of each other and the caller
remains waiting—i.e. performs no step—until every callee has
terminated its computation (read: has reached a final state).

For each callee, the initial state of its computation is determined only
by the input passed by the caller.

The only other interaction of the callee with the caller is to return in
its final state an output to p.

A recursive algorithm R is a finite set of i/o-algorithms

i.e. of components satisfying Gurevich’s and the Call Step Postulate

one of which is distinguished as main algorithm.
Copyright CC BY–NC-SA 4.0 7



What is a recursive run?

In a recursive run

differently from runs of a nd-seq algorithm where in each state at most
one step of the nd-seq algorithm is performed

a recursive algorithm R can perform in one recursive step simultaneously
one step of each of finitely many not Terminated and not Waiting
Called instances of its i/o-algorithms, where we define:

Active(q) iff q ∈ Called and not Terminated(q)

Waiting(p) iff forsome c ∈ CalledBy(p) Active(c)

Called = {main} ∪
⋃
p CalledBy(p)

Recursive Run Postulate. A recursive R-run is a sequence of pairs
(Si ,Ci) with states Si and sets Ci of instances of R-components s.t.
the Recursive Run Constraint and the Bounded Call Tree Branching
condition stated below are satisfied.

Copyright CC BY–NC-SA 4.0 8



Recursive Run Postulate

Recursive run constraint.

C0 = {main}, i.e. every recursive run starts with main,

in each recursive step a finite number of Active and not Waiting
instances of components of R is Called to make a step, i.e.

– every Ci is a finite set of in Si Active and not Waiting instances
of components of R,

– every Si+1 is obtained by performing in Si simultaneously one step
of each i/o-algorithm in Ci .

• Such an R-step is also called a recursive step of R.

Bounded call tree branching. There is a fixed natural number
m > 0, depending only on R, which in every R-run bounds the
number of callees which can be called by a call step.

Copyright CC BY–NC-SA 4.0 9



Call trees

main

↙ ↘

q1 . . . qn

↙ ↘

r11 . . . r1n1

leaves are Active and not Waiting

Calls of main create a finitely branched call tree.

Further calls happen at leaves and extend the tree.

When the algorithm at a child of a node has Terminated its
computation, the child is deleted from the tree.

When main has Terminated its computation, the call tree is reduced
again to the root.

Copyright CC BY–NC-SA 4.0 10



Extending nd-seq ASMs by Call rules to recursive ASMs

The same way a recursive algorithm consists of finitely many
i/o-algorithms, a recursive ASM R consists of finitely many recursive
ASM rules, also called components (or component ASMs) of R.

A recursive ASM R consists of a finite set of recursive ASM rules, one
of which is declared to be the main rule.

Recursive ASM rules are defined as usual by induction, adding to the
nd-seq rules the following Call rule:

– Let t0, . . . , tn be terms where the outermost function symbol f0 of t0
is different from the outermost fct symbol fi of ti for every i 6= 0.

•We declare: f0 ∈ Σout and fi ∈ Σin for i 6= 0.

– Let N ∈ N be the name of a rule declared by N (x1, . . . , xn) = r ,
where r is a recursive ASM rule all of whose free variables are
contained in {x0, . . . , xn}.

– Then t0← N (t1, . . . , tn) is a recursive ASM rule.

• called a named i/o-rule or simply a call rule.

Copyright CC BY–NC-SA 4.0 11



What are recursive ASM runs?

Recursive ASMs are ‘multi-agent’ machines, consisting of a set of
recursive rules instances of which may be called to be executed
independently.

To separate the state spaces of different agents we define instances of
a rule r by ambient ASMs of form amb a in r with agents a.

Definition. A recursive run of a recursive ASM R is a sequence of
pairs (Si ,Ai) of states Si and subsets Ai ⊆ Agent , where each
a ∈ Agent is equipped with a pgm(a) that is an instance amb a in r
of a rule r ∈ R, such that the following holds:

A0 is a singleton set A0 = {a0}, which in S0 equals the set Agent , a0
is equipped with pgm(a0) = (amb a0 in main).

Ai is a finite set of in Si Active and not Waiting agents.

Si+1 is obtained from Si—we say in one R-step—by performing for
each agent a ∈ Ai one step of pgm(a).

Copyright CC BY–NC-SA 4.0 12



The auxiliary predicates concerning recursive runs

Active(a) (in state S ) iff

a ∈ Agent and not Terminated(pgm(a)) (in S )

Waiting(a) (in state S ) iff

forsome a ′ ∈ CalledBy(a) Active(a ′) (in S )

Instances amb a in r of a called rule r permit to isolate the state
space of agent a from that of other agents

– by evaluating terms t in state S considering also the agent
parameter a, using valS (t , a) instead of valS (t).

To establish the call relationship we require the following:

– when a recursive ASM rule r , executed by a parent agent p, calls a
rule q to be executed by a child agent c, then the input/output
functions f of q are also functions in r and are interpreted in the
state space of p the same way as in the state space of c.

Copyright CC BY–NC-SA 4.0 13



Defining the behavior of Call rules (by an ASM rule)

We define the update set computed by a Call rule t0← N (t1, . . . , tn))
as the set of updates computed by the following caller ASM rule:

Call(t0← N (t1, . . . , tn)) =

let N (x1, . . . , xn) = q -- declaration of N

forall 1 ≤ i ≤ n let vi = ti -- evaluation of input in caller env

let t0 = f (t ′1, . . . , t
′
k )

forall 1 ≤ j ≤ k let v ′j = t ′j -- evaluation of output location

let c = new (Agent)

pgm(c) := amb c in q -- equip callee with its program instance

Insert(c,CalledBy(self))

Initialize(qc, v1/x1, . . . , vn/xn , f (v
′
1, . . . , v

′
k )/xo)

CalledBy(c) := ∅
This makes the callee ready to run and the caller Waiting .

Copyright CC BY–NC-SA 4.0 14



Recursive ASMs capture recursive algorithms

Theorem.

Each recursive ASM M defines a recursive algorithm that is
behaviourally equivalent to M with respect to recursive runs.

For each recursive algorithm R there exists a recursive ASM which is
behaviourally equivalent to R with respect to recursive runs.

The proof uses and extends Gurevich’s proof (2000) that sequential
ASMs capture sequential algorithms (which can be extended to hold also
for the case of non-deterministic sequential algorithms).

Copyright CC BY–NC-SA 4.0 15



Recursive Mergesort example

Mergesort = {l ← Sort(l ′), l ←Merge(l1, l2)}

sorted list ← Sort(unsorted list) = -- with 3 recursive calls

if sorted list =undef then

let n = length(unsorted list)

if n ≤ 1 then sorted list := unsorted list

if n > 1 and sorted list1 =undef= sorted list2 then

let concat(list1, list2) = unsorted list with length(list1) = bn2c
sorted list1← Sort(list1) -- split list into sublists

sorted list2← Sort(list2)

if n > 1 and sorted list1 6=undef 6= sorted list2 then

sorted list ←Merge(sorted list1, sorted list2)

Copyright CC BY–NC-SA 4.0 16



Recursive Merge ASM example

merged list ←Merge(inlist1, inlist2) = -- with 2 recursive calls

if merged list =undef then

if inlist1 = [] then merged list := inlist2
elseif inlist2 = [] then merged list := inlist1
if inlist1 6= [] 6= inlist2 then

for i = 1, 2 let xi = head(inlisti) restlisti = tail(inlisti)

if x1 ≤ x2 and merged restlist =undef

then merged restlist ←Merge(restlist1, inlist2))

if x1 > x2 and merged restlist =undef

then merged restlist ←Merge(inlist1, restlist2))

if x1 ≤ x2 and merged restlist 6=undef

then merged list := concat([x1],merged restlist))

else merged list := concat([x2],merged restlist))

Copyright CC BY–NC-SA 4.0 17



Recursive ASMs vs ASMs with unbounded parallelism

In a recursive ASM run, in each step only finitely many instances of
the components can be executed at the same time

and these instances do not stand in an ancestor relationship.

Therefore, the relevant locations—on copies of which these instances
work—can be made explicit by naming them and working on them in
parallel, each instance snippet working with its own ‘named’ locs.

Technically, to name individual locations one can use finite sequences
I of indeces 0, 1, 2, . . . as parameters, e.g. for Mergesort

– unsorted list(I ), sorted list(I ), merged list(I ), restlist(I ), etc.

The resulting parallelism on the input parameters is unbounded
(forall I ∈ {0, 1, 2, . . .}∗), although in each step only finitely many
parallel branches are executed.

Conclusion: Parallel ASMs (algorithms) are a wider class than recursive
ASMs (algorithms).

Copyright CC BY–NC-SA 4.0 18



Relation of recursive to partial order runs

Gurevich in 1993 proposed partial order (po) runs to define distributed
ASM runs and used them in 2002 with Blass to describe recursive runs.

Börger/Schewe defined in 2016 a more comprehensive notion of
concurrent ASM runs, reflecting a Concurrency Postulate.

The analysis of concurrent ASM runs showed the following relation to
partial order runs:

Theorem (Börger/Schewe 2019). Recursive algorithms (ASMs) are
exactly those concurrent finitely-composed algorithms (ASMs) C with
non-deterministic sequential components whose concurrent C-runs are
po-definable.

NB. The two restrictions on component ASMs are needed for 2 reasons:

Recursive algorithms are finitely-composed.

Unbounded parallel components lead to ASMs which are more
powerful than recursive ASMs.

Copyright CC BY–NC-SA 4.0 19



The Concurrency Postulate (Börger/Schewe 2016)

A concurrent system (or process) is given by a set A of agents a each
of which is equipped with an algorithm alg(a)—e.g. an ASM—that is
executed autonomously by the agent.

A concurrent A-run is a sequence S0, S1, . . . of ‘interaction states’:

– S0 is an initial state

– Sn+1 is obtained from Sn by combined single interacting moves of a
finite set An of agents a—each with its own clock—which

• started the execution of their current alg(a)-move by a read
interaction (‘receive action’) in state Sja (ja ≤ n depending on a),

• complete this (otherwise internal, purely local) move by a write
interaction (‘send action’) in state Sn .

NB. ‘Combining interacting moves of autonomous agents’ in S0, S1, . . .
expresses the concurrent view of multi-agent system runs.

Copyright CC BY–NC-SA 4.0 20



A way to formalize the concurrent ASM run step scheme

A nd-seq ASM ConcurStep(pgm(a)) permits agent a to choose

whether to perform a global step

– whose updates of globally visible (shared or output) locations are
synchronized with globally visible updates by other processes

• updates which are subject to the consistency constraint

i.e. to directly perform a global atomic read&write step (including
interaction locations) of pgm(a) in the current run state

or to perform a series of local steps affecting private memory, using
local copies for the previously read values of globally visible locations

– to only later interact again with other processes by

• writing back to globally visible locations and

• reading again possibly changed values of monitored/shared locs

i.e. to trigger performing in the run three consecutive atomic actions:

read&SaveGlobalData, LocalWriteStep, WriteBack

asynchronously, in different states (read: at clock ticks of a)

Copyright CC BY–NC-SA 4.0 21



Formula defining the concurrent ASM run step scheme

Then one can define Sn+1 formally

as obtained from Sn by applying to Sn all the update sets Ua any
agent a ∈ An computes in Sn using ConcurStep(pgm(a)).

Expressed equationally:

Sn+1 = Sn +
⋃
a∈An

Ua

NB. Here we use bootstrapping: instances ConcurStep(pgm(a)) of a
single-agent ASM are used to define the behavior of concurrent ASM
steps

computing the updates in Sn either by pgm(a) or by one of the
simulation components

– asynchronously at the agent’s clock tick

• due to the separation of reads/writes in concurrent steps

Copyright CC BY–NC-SA 4.0 22



Gurevich’s partial order ASM runs: the definition

Let M = (a, asma)a∈Agent be a family of ASMs. A partial order
M-run (called also distributed ASM run or po-run of M) is a partially
ordered non-empty set (M ,≤) of moves m of its agents ag(m) coming
with an initial segment function σ that satisfies the following conditions:

finite history : each move has only finitely many predecessors, i.e.
{m ′ ∈ M | m ′ ≤ m} is finite for each m ∈ M ,

sequentiality of agents: for each agent a the set of its moves in M is
linearly ordered, i.e. ag(m) = ag(m ′) implies m ≤ m ′ or m ′ ≤ m,

coherence: each finite initial segment I of (M ,≤) has an associated
state σ(I ) —interpreted as the result of all moves in I with m
executed before m ′ if m < m ′ — which for every maximal element
m ∈ I is the result of applying move m in state σ(I − {m}).

A move m is an application of the agent’s rule pgm(ag(m)) = asma .

NB. In general programs or agents are not restricted to finitely many.

Copyright CC BY–NC-SA 4.0 23



Partial order ASM run example IndependentWrite

Consider IndependentWrite with two agents a, b, rule f (self) := 1
and initial state σ(∅) where f (a) = f (b) = 0. Let ma resp. mb be a
move of a resp. b. The induced partial order is {(ma ,ma), (mb,mb)}
with initial segments ∅, {ma}, {mb}, {ma ,mb} and σ illustrated by:

f (a) = f (b) = 0

∅

↙ ↘

f (a) = 1 f (b) = 0 {ma} {mb} f (a) = 0 f (b) = 1

↘ ↙

{ma ,mb}

f (a) = f (b) = 1

Copyright CC BY–NC-SA 4.0 24



Characteristics of partial order ASM runs

NB. In IndependentWrite the updates f := 1 by a resp. b are
independent of each other because the two agents a, b come with
separate states (i.e. interpretation of f as agent-dependent fcts fa , fb).

Let I be any finite initial segment of a partial order ASM run.

Linearization Property .
All linearizations of I yield runs with the same final state σ(I ).

Unique Result Property .
Two partial order ASM runs with same moves and same initial
state yield for every finite initial segment the same associated
state, i.e. σ(I ) = σ′(I ) for each finite initial segment I .

Sequential Consistency Property.
Each linearization l of I yields a witness for the sequential
consistency of the set of sequential I -subruns (one sequential run
for each agent which makes a move in I ).

Copyright CC BY–NC-SA 4.0 25



RacyWrite has no not-single-agent partial order ASM runs

RacyWrite = -- two agents ai with i = 1, 2

if modeai = start then

if f 6= i then f := i -- NB. f is a shared fct

modeai := stop

There is no partial order ASM run of RacyWrite, started in
modeai = start , where each ai makes a move mi .

– As for IndependentWrite, initial segments are ∅, {m1}, {m2},
{m1,m2} and every state assignment σ satisfies f = i in σ({mi}).

–m1 seq m2 and m2 seq m1 are two linearizations of {m1,m2} with
different final state.

Only single-agent 1-step runs are po-runs of RacyWrite.

Copyright CC BY–NC-SA 4.0 26



Characterizing the computational power of po-runs

Consider finitely composed concurrent ASMs (satisfying stipulations
Gurevich made for partial order ASM runs), i.e. concurrent ASMs
C = (asma)a∈Agent such that

each component asma is an instance amb a in M of an ASM rule M
from a finite program base B of

– (possibly non-deterministic) sequential ASMs

– programs which may create new agents (potentially infinitely many)

• via rules let a = new (Agent) in r

initially there are only finitely many Agents (wlog say Agent = {a0})

Theorem (Börger/Schewe 2019).

For every recursive ASM R there is a behaviourally equivalent finitely
composed concurrent ASM CR whose concurrent runs are po-definable.

For each finitely composed concurrent ASM C whose concurrent runs
are po-definable there is a behaviourally equivalent recursive ASM RC.

Copyright CC BY–NC-SA 4.0 27



Simulating recursive R-runs by partial order runs of CR

Define {r∗ | r ∈ R} as program base of CR where

r∗ = if Active(r ) and not Waiting(r ) then r -- for nd-seq ASM r

(t0← N (t1, . . . , tn))
∗ =

if Active(r ) and not Waiting(r ) then Call(t0← N (t1, . . . , tn))

This guarantees the behavioral equivalence.

Let (S0,A0), (S1,A1), . . . be a concurrent run of CR.

ag defined by Si →Ai
Si+1.

Let Mi be the set of all moves which result in state Si of the initial
run segment [S0, . . . , Si ], i.e. finish by writing to Sj for some j < i .

Let M = ∪iMi . NB: formally moves are pairs (readm ,writem).

m < m ′ iff move m contributes to update some state Si (read:
finishes in Si) and move m ′ starts reading in a later state Sj with
i + 1 ≤ j . Thus, by definition, Mi is an initial segment of M .

Copyright CC BY–NC-SA 4.0 28



From R to CR: finite history, sequentiality of agents and σ

finite history : given m ′ ∈ M let Sj be the state in which it is started.
There are only finitely many earlier states S0, . . . , Sj−1, and in each of
them only finitely many moves m can finish.

sequentiality of agents holds since the R-components are seq ASMs.

let σ(I ) be the result of the application of the moves in I in any total
order extending the partial order ≤. Therefore σ(∅) = S0.

σ is well-defined :

– two incomparable moves m 6= m ′ either both start in the same state
or say m starts earlier than m ′. But m ′ also starts earlier than m
finishes. This is only possible for agents ag(m) = a and ag(m ′) = a ′

whose programs pgm(a), pgm(a ′) are not in an ancestor relationship
in the call tree. Therefore these programs have disjoint signatures, so
that the moves m and m ′ could be applied in any order with the
same resulting state change.

This implies the definability Si =def (result of all m ∈ Mi) = σ(Mi)

Copyright CC BY–NC-SA 4.0 29



From recursive R-runs to po CR-runs: coherence property

let I be a finite initial segment of finished moves of M .

– NB. A not yet finished move is a readm whose writem did not yet
follow. A pure readm does not change the state.

let I ′ = I − Imax where Imax = {m ∈ I | m maximal in I }
Then σ(I ) is the result of applying to σ(I ′) simultaneously (or in any
order) all moves m ∈ Imax .

– NB. The maximal moves are incomparable so that they can be
executed in any order without changing the result.

This implies in particular the coherence property for σ.

Copyright CC BY–NC-SA 4.0 30



From partial order C-runs to recursive RC-runs

Let C be a finitely composed concurrent ASM with program base
{ri | i ∈ I } of nd-seq ASMs

– whose concurrent runs are definable by partial-order runs.

To construct: a recursive ASM RC whose (recursive) runs simulate the
concurrent runs of C as follows:

– Let (S0,A0), (S1,A1), . . . be a concurrent C-run, defined by a partial
order run (M ,≤, ag , pgm, σ), i.e. such that

• Si = σ(Mi) for the set Mi of moves which led from S0 to Si
• the concurrent step Si ⇒ Si+1 is performed by parallel

independent moves m ∈ Mi+1 \Mi of ag(m) = a with program
pgm(a) = amb a in r , an instance of a base program r

Idea: simulate each move m by letting its agent a act as caller of a
named rule inr ← OneStepr (outr ).

– The callee agent c acts as delegate for one step of a: it executes
amb a in r and makes its program immediately Terminated .

Copyright CC BY–NC-SA 4.0 31



Recursive delegation rule

Refine Call to Call∗(inr ← OneStepr (outr )) by

adding to Initialize the update Terminated(pgm(c)) := false

defining OneStepr to perform amb caller (c) in r and terminate

let inr = set of exploration witnesses of r = {t1, . . . , tn}
let outr = set of updatable terms of r= {s1, . . . , sm}

forall ti ∈ inr let vi = ti -- evaluation of witness terms by caller

forall sj ∈ outr let sj = fj (sj ,1, . . . , sj ,kj )

forall 1 ≤ k ≤ kj let vj ,k = sj ,k -- evaluation of updatable locations

let c = new (Agent)

pgm(c) :=amb c in OneStepr

Insert(c,CalledBy(self))

Initialize(qc, . . . vi/xi , . . . , fj (vj ,1, . . . , vj ,kj )/yj , . . .)

CalledBy(c) := ∅
Copyright CC BY–NC-SA 4.0 32



Definition of RC

RC = {inr ← OneStepr (outr ) | r ∈ program base of C}
OneStepr =

amb caller (self) in r -- the delegate executes the step of its caller

Terminated(pgm(self)) := true -- ... and immediates stops

NB. amb a in inr ← OneStepr (outr ) with a = caller (c)

is equivalent to amb a in Call∗(inr ← OneStepr (outr ))

– by definition

triggers the delegate to execute program amb c in OneStepr
which triggers amb c in (amb a in r ) (by definition)

which is equivalent to amb a in r

– since the innermost ambient binding counts

Copyright CC BY–NC-SA 4.0 33



RC-run simulates C-run (S0,A0), (S1,A1), . . .

let Ai = {ai1, . . . , aik} ⊆ Agent where ij and k depend on i

let aij = ag(mij ) with

mij ∈ Mi+1 \Mi and pgm(aij ) = amb aij in rij (forall 1 ≤ j ≤ k )

The RC-run has the same agents aij ∈ Ai , but with program

inrij
← OneSteprij

(outrij
).

Their step in the recursive run leads to a state S ′i where all callers aij
are Waiting and the delegates cij are Active and not Waiting .

We choose the delegates for the next RC step, whereby

– all rules rij are performed simultaneously in the ambient of

caller (cij ) = aij thus leading as desired to the state Si+1,

– the delegate programs are Terminated , whereby their callers aij
become again not-Waiting and thereby ready to take part in the
next C-step.

• NB. Agents created in the C-run are initialized to not-Waiting .

Copyright CC BY–NC-SA 4.0 34



Finite concurrent ASMs with partial order definable runs

Finite concurrent ASMs, i.e. with a fixed number of agents and
non-deterministic sequential component programs, whose runs are
po-definable can be simulated by nd-seq ASMs.

More precisely:

Theorem. For each finite concurrent ASM C = {(ai , ri) | 1 ≤ i ≤ n}
with nd-seq ASMs ri such that all concurrent C-runs are definable by
partial-order runs, one can construct a nd-seq ASM MC such that each
MC-run is equivalent to a concurrent C-run and vice versa.

Corollary. Each Petri net can be simulated by a non-deterministic
sequential ASM.

Copyright CC BY–NC-SA 4.0 35



Definition of MC
Idea: linearize concurrent C-runs by relating their states Si to the states
σ(Mi) associated with initial segments Mi of a corresponding partial
order run (M ,≤, ag , pgm, σ)

where each step leading from Si to Si+1 consists of pairwise
incomparable moves of some agents in Mi+1 \Mi

these moves consist in applying a finite non-empty subset of C-rules
—executed by their agents in any order (read: in parallel)

MC =
choose R ⊆ {rj | 1 ≤ j ≤ n} with R 6= ∅

forall r ∈ R do r

NB. By assumption, choose and forall range over a fixed finite number
of elements so that MC is a non-deterministic sequential ASM.

Copyright CC BY–NC-SA 4.0 36



MC-runs are equivalent to linearized C-runs

For MC-runs S0, S1, . . . define (M ,≤, ag , pgm, σ) by induction:

S0 = σ(∅)
let Si+1 result from Si by moves mjk for some 1 ≤ jk ≤ n, applying
to Si all update sets ∆jk computed by the C-rule rjk .

By induction Si = σ(Mi) for some initial segment Mi of a partial
order run (M ,≤).
– Case 1. The moves mjk are pairwise independent, i.e. their

application in any order produces the same state Si+1. Then (M ,≤)
can be extended by these moves such that adding all mjk to Mi
yields an initial segment Mi+1 for which Si+1 = σ(Mi) holds.

– Case 2. If the moves mjk are not pairwise independent, the union of
their update sets is inconsistent, hence the run terminates in state Si .

Copyright CC BY–NC-SA 4.0 37



Linearized C-runs are equivalent to MC-runs

Let a linearized C-run with Si = σ(Mi) for all i ≥ 1 be given.

Then Si+1 results from Si by applying in parallel all moves mjk in
Mi+1 \Mi = {mj1, . . . ,mjl}, for some 1 ≤ l ≤ n.

Applying a move mjk means to apply some rule rjk , which by
assumption is a rule rjk ∈ C.

Applying the moves mjk in parallel means to apply their rules in
parallel, which yields a consistent update set (because Si+1 is defined).

Then the definition of MC implies that Si ⇒MC Si+1.

This implies that S0, S1, . . . is a run of MC.

Copyright CC BY–NC-SA 4.0 38



References

E. Börger and K.-D. Schewe: A Behavioural Theory of Recursive
Algorithms. (2019, Submitted)

E. Börger and K.-D. Schewe: Concurrent Abstract State Machines. Acta
Informatica 53 (5), 469-492 (2016)

Y.Gurevich: Evolving algebras 1993: Lipari Guide. in: E.Börger (Ed.):
Specification and Validation Methods. Oxford Univ. Press 1995, 9–36

Y.Gurevich: Sequential abstract-state machines capture sequential
algorithms. ACM Trans.Comp.Logic 1 (1), 77-111 (2000)

E. Börger and A. Raschke: Modeling Companion for Software
Practitioners. Springer 2018
http://modelingbook.informatik.uni-ulm.de

E. Börger and R. Stärk: Abstract State Machines. Springer 2003.

Copyright CC BY–NC-SA 4.0 39

http://modelingbook.informatik.uni-ulm.de


Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the original authors are mentioned

modified slides are made available under the same licence

the (re-) use is not commercial

Copyright CC BY–NC-SA 4.0 40


