
Egon Börger (Pisa) & Alexander Raschke (Ulm)

Modeling a Package Router

Illustrating the Synchronous Parallelism of ASMs

Università di Pisa, Dipartimento di Informatica boerger@di.unipi.it
Universität Ulm, Abteilung Informatik alexander.raschke@uni-ulm.de

See Ch.2.3 of Modeling Companion1
1 Figures are c© 2018 Springer-Verlag Germany, reused with permission.

Copyright CC BY–NC-SA 4.0 1

Synchronous parallelism of mono-agent ASMs

Synchronous parallelism of ASM executions supported by:

par to express bounded parallelism

forall to express potentially unbounded parallelism

In the PackageRouter example we

introduce these two constructs and

illustrate how application-domain-driven decisions steer the formulation
of the ground model

Copyright CC BY–NC-SA 4.0 2

Package Router requirements (1)

PlantReq. A package router sorts packages according to their destination
into destination bins. Packages arriving in the entry station carry code
indicating their destination which they can reach sliding down a path
formed by two-position switches equipped with entry and exit sensors
and connected by pipes

FunctionalReq. The controller reads the destination code and steers for
each package its path to the destination bin by appropriately positioning
the switches on this path.

EntryStationReq. The entry station elaborates one entering package per
round. First it reads the package code, then it lets the package slide
down while blocking the entry of other packages until the entered
package has left the entry station.

Copyright CC BY–NC-SA 4.0 3

Package Router requirements (2)

SensorReq. The sensors of switches are guaranteed to detect each
package separately.

SwitchReq. A switch must be free when its position is flipped, i.e. there
must be no package between the two sensors.

MisroutingReq. When a package arrives at the entry sensor of a switch
that has to be flipped to correctly route this package before the
preceding package has passed the exit sensor of the switch, then the
switch is not flipped and the arriving package is misrouted. Since this
can happen repeatedly, a misrouted package may be routed to any bin
and an appropriate report should be issued.

PkgSlidingReq. Packages may slide down at different speeds so that
more than one package may be in a pipe or switch. No package can
overtake another, neither in a pipe nor in a switch.

Copyright CC BY–NC-SA 4.0 4

Package Router Background structure

bin

Conveyor

Entry
Station

pkg pkgpkg

binbin bin

switch

inSensorPackage
Router
Structure

outSensor

pipe

Copyright CC BY–NC-SA 4.0 5

Package Router Signature: Static Part

Static sets Bin,Pipe, Switch with static tree structure

– root EntryStation with static successor functions:

– succ(EntryStation) ∈ Pipe,

– succ(p) ∈ Switch ∪ Bin for every p ∈ Pipe,

– succleft(sw), succright(sw) ∈ Pipe for every sw ∈ Switch.

– We use the inverse predecessor function predecessor (b) = a for
succ(a) = b.

bin : Destination → Bin associating a destination with a bin.

dirToDest : Switch × Bin → {left , right , none}
– indicating the position where to direct sw to enter a path from sw

to bin (if there is some)

Copyright CC BY–NC-SA 4.0 6

Package Router Signature: Dynamic Part (1)

Dynamic functions belonging to switches:

– monitored inSensor , outSensorleft , outSensorright with values in
{high, low}, written also with parameters inSensor (sw) or
inSensorsw , etc.

– a controlled variable pos with values in {right , left} indicating the
current position of the sw itch, also written pos(sw) or possw

Monitored predicates of the entry station:

– PkgArrival signalling to the reader component the presence of a
package that can be read

– PkgLeftEntry signalling that the package has left the entry station

These predicates represent sensor events; the link of a real-world
phenomenon to its sensor predicate is typically expressed by a Sensor
Assumption like the PkgArrival/ExitAssumption below.

Copyright CC BY–NC-SA 4.0 7

Package Router Signature: Dynamic Part (2)

controlled var pkgId updated by reader of entry station to values in
PkgId , internally representing an entered package.

function dest(id) controlled by the entry station to record the value it
reads from the package code associated with id , provided by an
external reader function pkgDest which extracts from the currently
read package code currPkgCode the destination of the encoded
package. currPkgCode is a monitored variable.

The PkgSlidingReq together with SwitchReq and MisroutingReq
indicate that pipes and switches may contain a sequence of packages,
represented in the model by a FIFO queue structure:

queuepipe representing the packages in the pipe ∈ Pipe,

for each sw ∈ Switch a queuesw to contain pkgids which

– entered into sw itch at its entry point inSensor ,

– did not yet exit the sw itch at an exit point outSensorleft/right

Copyright CC BY–NC-SA 4.0 8

PackageRouter behavior

In the requirements a monoprocessor solution is asked for. The three
component types are defined separately below.

Pipes are inactive components (without own behavior), representing
only queues which record the current position of packages.

PackageRouter =

EntryEngine

forall sw ∈ Switch Switch(sw)

forall bin ∈ Bin EnterPkgInto(bin)

NB. Parameter sw used here to denote an instance of Switch; each
instance comes with its own dynamic state functions. This is a form of
machine call, similarly for EnterPkgInto(bin).

Copyright CC BY–NC-SA 4.0 9

Sequential EntryEngine (see EntryStationReq)

ready PkgArrival ReadPkg
slide
Down

SlideDown
Pkg

ExitIs
Open

PkgLeftEntry
Open
Entry

ReadPkg =

let id =new (PkgId)

pkgId := id

dest(id) := pkgDest(currPkgCode) -- extract dest from barcode

SlideDownPkg =

Enqueue(pkgId , queue(succ(EntryStation)))

OpenExit

NB. The dotted component will be refined below

Copyright CC BY–NC-SA 4.0 10

EntryEngine components and assumptions

Submachines OpenExit and OpenEntry are left abstract, assuming
appropriate initialization conditions and:

SingleEntryAssumption. OpenExit, once the destination of the
currently examined package has been decoded, opens the entry station
exit to let this package slide down by gravity while blocking the entry
of the next package. OpenEntry reopens the entry station to read a
next package, once the just examined package has left the entry
station entering the successor pipe.

PkgArrival/ExitAssumption. When a package arrives at the reader
component of the entry station, the predicate PkgArrival becomes
true. It switches back to false when OpenExit opens the entry
station to let the package slide down. When a package has left the
entry station, the predicate PkgLeftEntry becomes true and switches
back to false when OpenEntry reopens the entry station to let the
next package enter the reader component.

Copyright CC BY–NC-SA 4.0 11

Switch component

FunctionalReq and SwitchReq imply that switch control performs two
actions:

a SwitchEntry to update the switch pos ition, if needed to
correctly route an incoming package

a SwitchExit when a package slides down to the successor pipe

Since these two actions are independent of each other

one operating at the head and one at the tail of the switch queue

there is no need to sequentialize them so that we put them in parallel.

Switch(sw) =

SwitchEntry(sw)

SwitchExit(sw)

Copyright CC BY–NC-SA 4.0 12

SwitchEntry

A sw itch has a sequential character:

upon the arrival of a package (detected by inSensorsw) and before
letting it enter (by MoveInPkg)

it must first try to update its pos ition (if needed)

to the direction dirToDest(sw , destBin)

to correctly route the package from this sw itch to its destination bin
destBin = bin(dest(p))

unless the package is already misrouted, case in which
dirToDest(sw , destBin) = none

ready
inSensor
= high

Position
Switch

enter
Pkg

MoveIn
Pkg

Copyright CC BY–NC-SA 4.0 13

PositionSwitch component

PositionSwitch =

let pipe = predecessor (self) -- the pipe before the switch

let pkg = head(queue(pipe)) -- the package arriving from pipe

if NeededToSwitch(pos , pkg) and Free(self) then Flip(pos)

NeededToSwitch(pos , p) iff pos 6= dirToDest(self, bin(dest(p)))

-- current switch pos ition would lead to misrouting

Free(sw) iff queue(sw) = [] -- there is no pkg in the switch

Flip(pos) = (pos := pos ′)

pos ′ = the opposite value of pos

Copyright CC BY–NC-SA 4.0 14

Package moving components

MoveInPkg =

let pipe = predecessor (self)

let pkg = head(queue(pipe)) in

Dequeue(queue(pipe)) -- move package out of pipe

Enqueue(pkg , queue(self)) -- move package into switch

SwitchExit moves a package from the switch into its successor pipe:

SwitchExit =

if outSensorleft = high or outSensorright = high then

let pkg = head(queue(self)) -- MoveOutPkg

Enqueue(pkg , queue(succ(self)))

Dequeue(queue(self))

Copyright CC BY–NC-SA 4.0 15

EnterPkgInto(bin)

NB. MisroutingReq completed by stipulating that misrouting is reported
upon pkg arrival in a bin

EnterPkgInto(bin) =

let pipe = predecessor (bin)

let pkg = head(pipe)

Dequeue(queue(pipe))

Insert(pkg , bin)

ReportMisrouting(pkg , bin)

where

ReportMisrouting(p, b) =

if bin(dest(p)) 6= b then

Display(‘p has been misrouted to b instead of dest(p)′)

Copyright CC BY–NC-SA 4.0 16

Throughput concern: a refinement

Problem: from the way the PackageRouterRequirements are formulated
they would still be satisfied even if every package is misrouted!

Throughput concern: ‘most packages will be routed correctly’

is an issue of how often it happens that in a switch packages meet
which need opposite switch positions to be routed correctly

by PkgSlidingReq it is an issue of how fast packages slide down

Software alone cannot solve the problem: domain knowledge needed.

Copyright CC BY–NC-SA 4.0 17

Additional EntryStationDelayRequirement

The entry station checks whether the destination of the currently
entering package is the same as for the previously entered one. If this
is not the case, then sliding down the currently entering package
must be delayed such that the switches the package has to pass can
be flipped in time where needed for a correct routing.

Component structure permits to insert the new requirement into the two
affected components ReadPkg and SlideDownPkg

ready PkgArrival ReadPkg
slide
Down

SlideDown
Pkg

ExitIs
Open

PkgLeftEntry
Open
Entry

Copyright CC BY–NC-SA 4.0 18

DelayedSlideDown component of EntryEngine

DelayRefinedReadPkg =

previousPkgDest := dest(pkgId) -- record the previous destination

ReadPkg

slide
Down

SameDest
AsBefore SlideDownPkg

ExitIs
Open

Set(timer) delay
Elapsed

(delayTime)

yes

no

SameDestAsBefore iff dest(pkgId) = previousPkgDest

Elapsed(delayTime) iff now − timer ≥ delayTime

Copyright CC BY–NC-SA 4.0 19

References (1)

The case study requirements document:

G. Hommel: Vergleich verschiedener Spezifikationsverfahren am
Beispiel einer Paketverteilanlage. Kernforschungszentrum Karlsruhe,
TR, August 1980.

Some publications which investigate the case study:

R. M. Balzer and N. M. Goldman and D. S. Wile: Operational
specification as the basis for rapid prototyping. ACM SIGSOFT
Software Engineering Notes 7 (5), 3-16 (1982)

W. Wartout and R. Balzer: On the inevitable intertwining of
specification and implementation. Comm. ACM 25(7) 438-440 (1982)

P. E. London and M. S. Feather: Implementing specification freedoms.
In: C. Rich and C. E. Waters (eds): Readings in AI and Software
Engineering, Morgan Kaufmann 1986, 285-305

Copyright CC BY–NC-SA 4.0 20

References (2)

D. Jackson and M. Jackson: Problem decomposition for reuse.
Software Engineering J. 11 (1), 19-30, 1996

M. S. Feather and S. Fickas and A. Finkelstein and A. van
Lamsweerde: Requirements and specification exemplars. Automated
Software Engineering 4 (4) 419-438, 1997

E. Börger and A. Raschke: Modeling Companion for Software
Practitioners. Springer 2018
http://modelingbook.informatik.uni-ulm.de

Copyright CC BY–NC-SA 4.0 21

http://modelingbook.informatik.uni-ulm.de

Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the two original authors are mentioned

modified slides are made available under the same licence

the (re-) use is not commercial

Copyright CC BY–NC-SA 4.0 22

