
Egon Börger (Pisa)

Concurrency, Interleaving and Mutual Exclusion

A critical analysis of interleaving used for Mutex algorithms

Dipartimento di Informatica, Università di Pisa, Italy
boerger@di.unipi.it

Copyright CC BY–NC-SA 4.0 1



The observation

The interleaving model of computation is widely used for the design
and analysis of distributed algorithms.

– see for example Nancy A. Lynch: Distributed Algorithms (1996).

This includes mutual exclusion (Mutex) algorithms, see op.cit. Ch.
10.2, 10.4.

An alternative computation model to describe and analyse runs of
distributed systems is that of concurrent ASMs.

– see E. Börger and K.-D. Schewe: Concurrent Abstract State
Machines (Acta Informatica, 2016).

An analysis of Mutex algorithms in terms of concurrent ASM runs
reveals that

using interleaving for Mutex algorithms may be begging the question.

Copyright CC BY–NC-SA 4.0 2



Mutual Exclusion problem (Lynch 10.2, 10.4)

Problem: allocate one nonshareable resource for exclusive use among
≥ 2 distributed processes

avoiding any form of central control

using shared variables for information exchange bw processes

Schematic idea: each process

from its remainder region (R)

moves into a trying region (T)

to gain exclusive access to the critical region (C)

when the resource is not needed any more, in its exit region (E)
executes an exit protocol

to return to its remainder region (R)

i.e. the desired sequence of protocol phases for each process is

R −→ T −→ C −→ E −→ R

Copyright CC BY–NC-SA 4.0 3



Typical Mutual Exclusion requirements

Mutual Exclusion: It never happens that two processes are
simultaneously in the critical section.

Lockout-Freedom:

Assuming that each process always returns the resource, every process
that reaches the trying region eventually will enter the critical region.

– Every process that reaches its exit region eventually will reenter its
remainder region.

Fairness: The first-come-first-served principle holds (for a reasonable
notion of coming-first which has to be defined)

The following Progress property follows from Lockout-Freedom (but
no vice versa):

If some p is in T and nobody in C, then eventually some p will enter C.

– If some p is in E then eventually some p will enter R.

Copyright CC BY–NC-SA 4.0 4



Peterson’s Mutex algorithm (Peterson 1981, Lynch 10.5)

There are 2 processes, say Process = {p1, p2}.
We define a concurrent ASM

2MutexPetersonAsm = (p, 2MutexPetersonp)p∈Process

where each process p executes its instance 2MutexPetersonp of
the algorithm 2MutexPeterson defined below.

Algorithmic idea: each p ∈ Process , to compete for the resource:

first indicates its interest by setting a flagp, a variable (0-ary location)
the other process can read

then will FetchStick to become stickHolder , a variable (0-ary
location) shared by both processes, initially stickHolder ∈ Process

in possession of which it must WaitToWin until, by becoming a
Winner , it can enter the critical section

whereafter UponExit it resets its flagp to return to its remainder
section

Copyright CC BY–NC-SA 4.0 5



2MutexPeterson control flow and data model

SetFlag = (flagself := 1) ReSetFlag = (flagself := 0)

flagp ∈ {0, 1} (initially flagp = 0), writable by p (output location),
readable (monitored) by theOtherProcess

FetchStick = if (not HasStick (self)) then stickHolder := self

where HasStick (p) iff stickHolder = p

NB. In each state only one process HasStick and only one of them
—theOtherProcess—can fetch it, by updating stickHolder to itself.1
1 Figure c© 2016 Springer-Verlag Germany, reused with permission.

Copyright CC BY–NC-SA 4.0 6



2MutexPeterson Winner strategy

Winner iff

NobodyElseInterested or MeantimeSomebodyElseFetchedStick

NobodyElseInterested iff flagtheOtherProcess(self) = 0

MeantimeSomebodyElseFetchedStick iff

stickHolder = theOtherProcess(self)

where theOtherProcess(pi) = pj with i 6= j (i , j ∈ {1, 2})

Copyright CC BY–NC-SA 4.0 7



Proving 2MutexPetersonAsm properties

Assume that concurrent runs of 2MutexPetersonAsm start in an
initial state and that each time a process can perform a step it
eventually will execute a step. Then the following properties hold.

Proposition 1. 2MutexPetersonAsm satisfies the Mutual Exclusion
requirement: never more than one process is in its critical phase.

Proposition 2. 2MutexPetersonAsm satisfies the Lockout-Freedom
requirement.

NB. Fairness holds only wrt which process is the first to enter mode
WaitToWin.

Proof: induction on concurrent 2MutexPeterson runs.

Copyright CC BY–NC-SA 4.0 8



A petitio principii concerning FetchStick and stickHolder

In Lynch 10.5 FetchStick is defined (with different naming) simply
as stickHolder := self, without guard ‘if not HasStick ’.

– It is the interleaving assumption for asynchronous runs of distributed
algorithms which guarantees consistency, i.e. that at each moment at
most one process makes a step, e.g. to update stickHolder .

This interleaving begs the question. It implies Mutex directly:

if FreeCS then csHolder := self

where FreeCS iff csHolder = undef

In 2MutexPeterson, the definition of FetchStick is consistent
for concurrent ASM runs, without making the interleaving assumption

– because there are only two processes p1, p2 and because stickHolder
in each state has one of them as value. Therefore, in each step of a
concurrent run of 2MutexPetersonAsm, at most one process
can fetch the stick, namely by updating stickHolder to itself.

Copyright CC BY–NC-SA 4.0 9



Generalizing Peterson’s Mutex algorithm for n > 2

NB. The generalization in Lynch op.cit. illustrates the petitio principii
even more clearly. We show this by formulating in terms of ASM the
generalization presented in Lynch op.cit.

There are n ≥ 2 processes, say Process = {p1, . . . , pn}.
We define a concurrent ASM

MutexPetersonAsm = (p,MutexPetersonp)p∈Process

where each process p executes its instance MutexPetersonp of
MutexPeterson.

Algorithmic idea: every p must compete for the resource
successively at each level , from 1 to n − 1,

in a competition arranged such that at each level, one process looses

– so that at each level k , at most n − k processes can win, therefore
at most one process at level n − 1

This means that MutexPetersonn is defined as an iterative version
of 2MutexPetersonAsm.
Copyright CC BY–NC-SA 4.0 10



The generalized (iterated) competition at each level

To compete at the current levelp ∈ {1, . . . , n − 1} (initially levelp = 1):

the flagp location (initially flagp = 0) is set to level , as interest
indicator for this level , and can be read by all other processes

the stickHolderlevel ∈ {p1, . . . , pn} is parameterized by level and
shared by all processes

the Winner strategy is parameterized by level and permits to
Increase(level)

until CompetitionFinished at levelp = n − 1, so that p can enter the
critical section

whereafter UponExit it resets its flagp (to 0) and its levelp (to 1) to
return to its remainder section

Copyright CC BY–NC-SA 4.0 11



MutexPetersonn control flow model

SetFlag = (flagself := levelself) Reset(level) = (levelself := 1)

CompetitionFinished iff levelself = n − 1

Increase(level) = (levelself := levelself + 1)2

2 Figure c© 2016 Springer-Verlag Germany, reused with permission.

Copyright CC BY–NC-SA 4.0 12



level-parameterization of Winner strategy

Winner (level) = NobodyElseInterested(levelself)

or MeantimeSomebodyElseFetchedStick (levelself)

NobodyElseInterested(level) iff forall p 6= self flagp < level

-- generalizing flagtheOtherProcess(self) = 0 (for n = 2)

MeantimeSomebodyElseFetchedStick (level) iff

stickHolderlevel 6= self

-- generalizing stickHolder = theOtherProcess(self) (for n = 2)

Copyright CC BY–NC-SA 4.0 13



Multiple-writer resolution is a Mutex resolution

How to guarantee that in each step, at most one process p can (write
stickHolderlevel to) become the stickHolderlevel?

In Lynch op.cit. such a ‘multiple-writer resolution’ is hidden in the
interleaving assumption, so that there FetchStick is generalized by
simply parameterizing it to stickHolderlevel(self) := self.

But this is a petitio principii , made visible by a select ion function—a
form of external control!—which chooses one new stickHolder :

FetchStick = if chosenStickHolderlevel(self) = self

then stickHolderlevel(self) := self

where let Cand = {p | flagp = level and modep = getStick

and stickHolderlevel 6= p}

chosenStickHolderlevel =

 undef if Cand = ∅

select(Cand) else

Copyright CC BY–NC-SA 4.0 14



MutexBurns with single-writer multiple-reader locs

A fresh competitor (who just set flag := 1) withdraws in case there is
AnySmaller Competitor (for some q < p flagq = 1).

A competitor who entered with no smaller competitor has to wait as
long as there is AnyLargerCompetitor (for some q > p flagq = 1)

Copyright CC BY–NC-SA 4.0 15



Analyzing MutexBurns

Boolean-valued shared flags are single-writer multiple-reader locations.
No interleaving assumption is needed to show the following properties:

Mutual Exclusion holds because

– only the currently largest waiting competitor, say p, can enter the
critical section CS, it remains competitor until exiting

• no other (smaller) waiting competitor can enter the critical section

• no larger process q can reach the wait phase because right after
entering it must withdraw due to p < q

Progress holds because if nobody is in the critical section CS:

– a waiting competitor (the largest one) can enter CS

– any competitor with no smaller competitor can enter phase wait

No particular Fairness property is guaranteed.

NB. For a Mutex algorithm with single-writer multiple-reader locs which
also satisfies Lockout-Freedom see Lamport’s Bakery algorithm.

Copyright CC BY–NC-SA 4.0 16



Exclusive Allocation of Multiple Resources

NB. Atomic simultaneous grasping of all resources is inadequate.

Algorithmic idea (Lynch 11.3):

for each resource, competitors must register in a FIFO queue(res)

– shared by all processes which may request the resource

such that Avail(res)p iff p = head(queue(res))

– Assumption: ‘simultaneous insertion’ of requests into a queue are
sequentialized in an arbitrary manner (a queue plugin assumption)

processes p must compete for the neededResources one-by-one
following a total resource order < (hierarchical resource allocation) s.t.

– neededResourcesp = res(1, p), . . . , res(mp, p)

• where mp = resQtyp, res(i , p) < res(i + 1, p)

– iterate Grasp(currResource) over neededResources

• where currResourcep = res(currResNop, p) with local iterator
variable currResNop ∈ {1, . . . , resQtyp} (initially
currResNop = 1).

Copyright CC BY–NC-SA 4.0 17



HierarchicalResAlloc algorithm

NB. Generalizes the Dining Philosopher algorithm with 2 forks.

Copyright CC BY–NC-SA 4.0 18



HierarchicalResAlloc predicates and actions

currResource = res(currResNoself, self)

RegisterFor(r ) = Insert(self, queue(r ))

Avail(r ) iff head(queue(r )) = self

AvailAllNeededResources = (currResNoself = resQtyself)

PrepareToGraspNextResource =

currResNoself := currResNoself + 1

ReleaseResources =

forall r ∈ neededResourcesself Dequeue(self, queue(r ))

ReInitialize(currResNo) -- currResNoself := 1

Copyright CC BY–NC-SA 4.0 19



Analyzing HierarchicalResAlloc

Mutual Exclusion holds

in fact, if p is in mode critical , for each needed resource p is the head
of the queue(res). Thus no other process can have Grasped any
such resource until p has ReleaseResources UponExit .

Lockout-Freedom holds

since in each state of a run, the process p which holds (meaning
head(queue(r )) = p) the largest resource r can make a move

– in mode = critical , by run assumption p will eventually
ReleaseResources

– in mode = try , p can RegisterFor(currResource), holding
r < currResource

– in mode = waitForAvail(currResource), Availp(currResource)
must be true (because otherwise some other process would hold
currResource > r) so that p can either move to mode = critical
or PrepareToGraspNextResource

Copyright CC BY–NC-SA 4.0 20



References

Nancy A. Lynch, Distributed Algorithms.

– Morgan Kaufmann, San Franciso 1996

See also material for course 6.852 at MIT, Fall 2013

E. Börger and K.-D. Schewe: Concurrent Abstract State Machines.
Acta Informatica 53 (2016), 469-492

E. Börger: Modeling Distributed Algorithms by Abstract State
Machines Compared to Petri Nets

– Springer LNCS 9675 (2016) 3-34

E. Börger and A. Raschke: Modeling Companion for Software
Practitioners. Springer 2018
http://modelingbook.informatik.uni-ulm.de

Copyright CC BY–NC-SA 4.0 21

http://modelingbook.informatik.uni-ulm.de


Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the original authors are mentioned

modified slides are made available under the same licence

the (re-) use is not commercial

Copyright CC BY–NC-SA 4.0 22


