Egon Borger (Pisa)

Concurrency, Interleaving and Mutual Exclusion

A critical analysis of interleaving used for Mutex algorithms

Dipartimento di Informatica, Universita di Pisa, ltaly
boerger@di.unipi.it

Copyright CC BY-NC-SA 4.0

The observation

m [he interleaving model of computation is widely used for the design
and analysis of distributed algorithms.

— see for example Nancy A. Lynch: Distributed Algorithms (1996).
= This includes mutual exclusion (Mutex) algorithms, see op.cit. Ch.

10.2, 10.4.

m An alternative computation model to describe and analyse runs of
distributed systems is that of concurrent ASMs.

—see E. Borger and K.-D. Schewe: Concurrent Abstract State
Machines (Acta Informatica, 2016).

= An analysis of Mutex algorithms in terms of concurrent ASM runs
reveals that

using interleaving for Mutex algorithms may be begging the question.

Copyright CC BY-NC-SA 4.0

Mutual Exclusion problem (Lynch 10.2, 10.4)

Problem: allocate one nonshareable resource for exclusive use among
> 2 distributed processes

m avoiding any form of central control

m using shared variables for information exchange bw processes

Schematic idea: each process

= from its remainder region (R)

= moves into a trying region (T)

m to gain exclusive access to the critical region (C)

mwhen the resource is not needed any more, in its exit region (E)
executes an exit protocol

m to return to its remainder region (R)

I.e. the desired sequence of protocol phases for each process is

R—T—0—F—R

Copyright CC BY-NC-SA 4.0

Typical Mutual Exclusion requirements

Mutual Exclusion: It never happens that two processes are
simultaneously in the critical section.

Lockout-Freedom:

m Assuming that each process always returns the resource, every process
that reaches the trying region eventually will enter the critical region.

— Every process that reaches its exit region eventually will reenter its
remainder region.

Fairness: The first-come-first-served principle holds (for a reasonable
notion of coming-first which has to be defined)

The following Progress property follows from Lockout-Freedom (but
no vice versa):

mlf some pisin T and nobody in C, then eventually some p will enter C.
— |f some p is in E then eventually some p will enter R.

Copyright CC BY-NC-SA 4.0

Peterson’s Mutex algorithm (Peterson 1981, Lynch 10.5)

m There are 2 processes, say Process = {p1,p2}.
= \We define a concurrent ASM
2MUTEXPETERSONASM = (p, 2MUTEXPETERSONp) ;¢ Process

where each process p executes its instance 2MUTEXPETERSON,, of
the algorithm 2MUTEXPETERSON defined below.

Algorithmic idea: each p € Process, to compete for the resource:

m first indicates its interest by setting a flagy, a variable (0-ary location)
the other process can read

m then will FetchStick to become stickHolder, a variable (0-ary
location) shared by both processes, initially stickHolder € Process

min possession of which it must WaitTo Win until, by becoming a
Winner, it can enter the critical section

= whereafter UponExit it resets its flagy to return to its remainder
section

Copyright CC BY-NC-SA 4.0

2MUTEXPETERSON control flow and data model

SETFLAG = (flagge)f == 1)

RESETFLAG = (flaggg|f := 0)

flag, € {0, 1} (initially flagy = 0), writable by p (output location),

readable (monitored) by theOtherProcess

———> try ——> SETFLAG |—— ch?:k — 5| FETCHSTICK

Wait
ToWin

RESETFLAG %<UponExit >Hritical b< Winner >J

FETCHSTICK = if (not HasStick(self)) then stickHolder = self

where HasStick(p) iff stickHolder = p

NB. In each state only one process HasStick and only one of them
—theOtherProcess—can fetch it, by updating stickHolder to itself.!

! Figure © 2016 Springer-Verlag Germany, reused with permission.

Copyright CC BY-NC-SA 4.0

2MUTEXPETERSON Winner strategy

Winner iff
NobodyFElselnterested or MeantimeSomebodyFElseFetchedStick

| get Wait
— try —— SETFLAG —— Stick — > FETCHSTICK ToWin

RESETFLAG b< UpOﬂEKit >?critical %< Winner >J

NobodyFElselnterested iff ﬂagtheOtheercess(self) =0
MeantimeSomebodyFElseFetchedStick iff

stickHolder = theOtherProcess(self)
where theOtherProcess(p;) = pj with 1 # j (4,7 € {1,2})

Copyright CC BY-NC-SA 4.0

Proving 2MUTEXPETERSONASM properties

Assume that concurrent runs of 2MUTEXPETERSONASM start in an
initial state and that each time a process can perform a step it
eventually will execute a step. Then the following properties hold.

Proposition 1. 2MUTEXPETERSONASM satisfies the Mutual Exclusion
requirement: never more than one process is in its critical phase.

Proposition 2. 2MUTEXPETERSONASM satisfies the Lockout-Freedom
requirement.

NB. Fairness holds only wrt which process is the first to enter mode

Wait'ToWin.

Proof: induction on concurrent 2MUTEXPETERSON runs.

Copyright CC BY-NC-SA 4.0 8

A petitio principii concerning FETCHSTICK and stickHolder

mIn Lynch 10.5 FETCHSTICK is defined (with different naming) simply
as stickHolder = self, without guard ‘if not HasStick'.

— It is the interleaving assumption for asynchronous runs of distributed
algorithms which guarantees consistency, i.e. that at each moment at
most one process makes a step, e.g. to update stickHolder.

This interleaving begs the question. It implies Mutex directly:

if FreeCS then csHolder .= self
where FreeCS iff csHolder = undef

mln 2MUTEXPETERSON, the definition of FETCHSTICK is consistent
for concurrent ASM runs, without making the interleaving assumption

— because there are only two processes p1, po and because stickHolder
in each state has one of them as value. Therefore, in each step of a
concurrent run of 2MUTEXPETERSONASM, at most one process
can fetch the stick, namely by updating stickHolder to itself.

Copyright CC BY-NC-SA 4.0 9

Generalizing Peterson’s Mutex algorithm for n > 2

NB. The generalization in Lynch op.cit. illustrates the petitio principii
even more clearly. We show this by formulating in terms of ASM the
generalization presented in Lynch op.cit.
m There are n > 2 processes, say Process = {pi,...,pn}.
= We define a concurrent ASM

MUTEXPETERSONASM = (p, MUTEXPETERSONp), c Process

where each process p executes its instance MUTEXPETERSON,, of
MUTEXPETERSON.

Algorithmic idea: every p must compete for the resource
successively at each level, from 1 to n — 1,

min a competition arranged such that at each level, one process looses

—so that at each level £, at most n — k processes can win, therefore
at most one process at level n — 1

This means that MUTEXPETERSON,, is defined as an iterative version
of 2MUTEXPETERSONASM.

Copyright CC BY-NC-SA 4.0 10

The generalized (iterated) competition at each level

To compete at the current level, € {1,...,n — 1} (initially level, = 1):

n the flagy location (initially flag, = 0) is set to level, as interest
indicator for this [evel, and can be read by all other processes

mthe stickHolder),.; € {p1,-..,pn} is parameterized by level and
shared by all processes

mthe Winner strategy is parameterized by level and permits to
INCREASE(level)

m until CompetitionFinished at level, = n — 1, so that p can enter the
critical section

m whereafter UponEzit it resets its flagy (to 0) and its level, (to 1) to
return to its remainder section

Copyright CC BY-NC-SA 4.0 11

MUTEXPETERSON,, control flow model

get wait
Stick —> FETCHSTICK ——— ToWin

Competition
INCREASE(level) ?< i
o Finished
l yes

RESETFLAG : -
RESET(level) << UDOHE}{It><. critical

——> try ——> SETFLAG ——

SETFLAG = (flaggelf = levelgglf) RESET(level) = (levelgglf := 1)
CompetitionFinished iff levelggip = n — 1

INCREASE(level) = (levelgalf = levelgalf + 1)

2 Figure (© 2016 Springer-Verlag Germany, reused with permission.

Copyright CC BY-NC-SA 4.0

12

level-parameterization of Winner strategy

Winner(level) = NobodyElseInterested(levelgayf)
or M eantz'meSomebodyElseFetchedStick(levelse|f)

NobodyFElselnterested(level) iff forall p # self flag, < level

- generalizing ﬂagtheOtheercess(Se”) = 0 (for n = 2)
MeantimeSomebodyFElseFetchedStick (level) iff
stickHolder),,.; # self
-- generalizing stickHolder = theOtherProcess(self) (for n = 2)

Copyright CC BY-NC-SA 4.0 13

Multiple-writer resolution is a Mutex resolution

m How to guarantee that in each step, at most one process p can (write
stickHolder;,,.; to) become the stickHolder), e?

In Lynch op.cit. such a ‘'multiple-writer resolution’ is hidden in the
interleaving assumption, so that there FETCHSTICK is generalized by

simply parameterizing it to stickHolderle%l(sem .= self.

But this is a petitio principii, made visible by a selection function—a
form of external controll—which chooses one new stickHolder:

FETCHSTICK = if chosenStz'ckHolderlevel(Sem = self
then stickHolderlevel(sem .= self
where let Cand = {p | flag, = level and mode, = getStick
and stickHolder), .; # p}

undef if Cand =0
chosenStickHolder) o) =
select(Cand) else

Copyright CC BY-NC-SA 4.0

MUTEXBURNS with single-writer multiple-reader locs

A fresh competitor (who just set flag := 1) withdraws in case there is
AnySmaller Competitor (for some ¢ < p flagy = 1).

A competitor who entered with no smaller competitor has to wazit as
long as there is AnylargerCompetitor (for some ¢ > p flag, = 1)

RESETFLAG
yes

L

—> try ——| SETFLAG | —— check AnySmaIIerCompetitor>
r no l
RESETFLAG wait <

I
yes

no l
< UponExit >% critical %AnyLargerCompetitor}

Copyright CC BY-NC-SA 4.0

15

Analyzing MUTEXBURNS

Boolean-valued shared flags are single-writer multiple-reader locations.
No interleaving assumption is needed to show the following properties:

m Mutual Exclusion holds because
—only the currently largest waiting competitor, say p, can enter the

critical section CS, it remains competitor until exiting
e no other (smaller) waiting competitor can enter the critical section
e no larger process ¢ can reach the wait phase because right after
entering it must withdraw due to p < ¢
m Progress holds because if nobody is in the critical section CS:

— a waiting competitor (the largest one) can enter CS
— any competitor with no smaller competitor can enter phase wait

m No particular Fairness property is guaranteed.

NB. For a Mutex algorithm with single-writer multiple-reader locs which
also satisfies Lockout-Freedom see Lamport’'s Bakery algorithm.

16

Copyright CC BY-NC-SA 4.0

Exclusive Allocation of Multiple Resources

NB. Atomic simultaneous grasping of all resources is inadequate.
Algorithmic idea (Lynch 11.3):
= for each resource, competitors must register in a FIFO queue(res)
— shared by all processes which may request the resource
such that Avail(res), iff p = head(queue(res))

— Assumption: ‘simultaneous insertion’ of requests into a queue are
sequentialized in an arbitrary manner (a queue plugin assumption)

m processes p must compete for the neededResources one-by-one
following a total resource order < (hierarchical resource allocation) s.t.

— neededResources, = res(1,p), ..., res(mp, p)
e where my, = resQtyy, res(i,p) < res(i + 1, p)
— iterate GRASP(currResource) over neededResources

e where currResource, = res(currResNoy, p) with local iterator
variable currResNoy, € {1, ..., resQty,} (initially
currResNo, = 1).

Copyright CC BY-NC-SA 4.0 17

HIERARCHICALRESALLOC algorithm

hd

(currResource)

GRASP

> avalil

k

l

PREPARETOGRASP no AvailAllNeeded
NEXTRESOURCE Resources

yes

W

<—< UponExit ><—— ecritical

RELEASERESOURCES
GRASP() - REGISTER
(r) = FOR (1)

waitFor
Avail(r)

NB. Generalizes the Dining Philosopher algorithm with 2 forks.

Copyright CC BY-NC-SA 4.0

18

HIERARCHICALRESALLOC predicates and actions

currResource = res(currResNoggf, self)
REGISTERFOR(7) = INSERT(self, queue(r))
Avail(r) iff head(queue(r)) = self
AvailAllNeededResources = (currResNogalf = resQtygelf)
PREPARETOGRASPNEXTRESOURCE =
currResNogalf := currResNoggf + 1
RELEASERESOURCES =
forall r € neededResourcesgglf DEQUEUE(self, queue(r))
REINITIALIZE(currResNo) - currResNogglf := 1

Copyright CC BY-NC-SA 4.0 19

Analyzing HIERARCHICALRESALLOC

Mutual Exclusion holds

min fact, if p is in mode critical, for each needed resource p is the head
of the queue(res). Thus no other process can have GRASPed any
such resource until p has RELEASERESOURCES UponkFEuzit.

Lockout-Freedom holds

msince in each state of a run, the process p which holds (meaning
head(queue(r)) = p) the largest resource r can make a move

—in mode = critical, by run assumption p will eventually
RELEASERESOURCES

—in mode = try, p can REGISTERFOR(currResource), holding
r < currResource

—in mode = waitForAvail(currResource), Availy(currResource)

must be true (because otherwise some other process would hold

currResource > r) so that p can either move to mode = critical
or PREPARETOGRASPNEXTRESOURCE

Copyright CC BY-NC-SA 4.0 20

References

m Nancy A. Lynch, Distributed Algorithms.

— Morgan Kaufmann, San Franciso 1996
See also material for course 6.852 at MIT, Fall 2013

m E. Borger and K.-D. Schewe: Concurrent Abstract State Machines.

Acta Informatica 53 (2016), 469-492

m E. Borger: Modeling Distributed Algorithms by Abstract State
Machines Compared to Petri Nets

— Springer LNCS 9675 (2016) 3-34

m E. Borger and A. Raschke: Modeling Companion for Software
Practitioners. Springer 2018
http://modelingbook.informatik.uni-ulm.de

Copyright CC BY-NC-SA 4.0

21

http://modelingbook.informatik.uni-ulm.de

Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

I.e. in particular under the condition that
m the original authors are mentioned

m modified slides are made available under the same licence

mthe (re-) use is not commercial

Copyright CC BY-NC-SA 4.0

22

