
Egon Börger (Pisa)

Why Programming Must be Supported by Modeling

Slides prepared for a talk at the ISoLA18 conference track

Towards a Unified View of Modeling and Programming

See paper Why Programming Must be Supported by Modeling and How
in: T. Margaria and B. Steffen (Eds): ISoLA 2018. Springer LNCS
11244, pg. 1-22.
https://doi.org/10.1007/978-3-030-03418-4_6

boerger@di.unipi.it

Copyright CC BY–NC-SA 4.0 1

https://doi.org/10.1007/978-3-030-03418-4_6


The problem: two ends of sw-based-system development

A reliable method for the development of a software-based-system must

bridge the gap

bw human understanding and formulation of real-world problems

– which involves application domain experts and system users

and deployment of their solutions by code-executing machines

– which involves experts in computing (design engineers, programmers)

NB. In a software-based-system

the sw and the computer executing it are only part of the system

the other parts constitute a heterogeneous environment on which
software and computer depend and which they affect

– technical equipment, sensors, actors, information systems, users, etc.

Copyright CC BY–NC-SA 4.0 2



Where the pbl becomes tangible: requirements capture

Requirement documents are descriptions of real-world phenomena

– typically written by domain experts for system design experts
(usually not knowledgeable in the application domain)

– in natural language, interspersed with diagrams, tables, formulae, etc.

– possibly ambiguous, incomplete, inconsistent

Compilable programs are software representations of real-word items
and actions, written for mechanical elaboration by machines (symbol
manipulation) and therefore coming with every needed implementation
detail (technical precision, completeness, consistency).

How can (informal) requirements and (formal) code, the latter written
to satisfy the former, be linked in a way to controllably

guarantee that the code does what the requirements describe?

How can the link between requirements and code be reliably preserved
during maintenance (when requirements do change)?

Copyright CC BY–NC-SA 4.0 3



How the problem can be solved

Step 1. Turn the requirements into a ground model.

Ground models are ‘blueprints’, descriptions which must provide a
common, correct, objectively checkable understanding of the intended
system behavior by all parties involved.

This requires the descriptions to be:

precise, formulated in accurate application-domain terms (not code)

complete and minimal

– containing each element which is relevant for the behavior of the
intended system, avoiding what is needed only for its implementation

correct wrt the intensions for the system

consistent (an internal model property)

Step 2. Transform the ground model in a correctness preserving way
into code.

Copyright CC BY–NC-SA 4.0 4



Step 1. Characteristics of ground models

A common, correct and checkable understanding of system behavior by

application domain experts, who provide reqs for desired behavior

sw engineers, who provide implemented behavior

requires 3 properties for ‘blueprints’: to be

formulated in a common language all parties involved understand
(communication problem)

‘Nearly all the serious accidents in which sw has been involved in
the past 20 years can be traced to reqs flaws, not coding
errors.’(Leveson 2012)

objectively checkable for its correctness (evidence problem)

– to provide evidence that model elements adequately convey the
meaning of what they stand for in the real world and reliably express
the intended real-life system behavior

executable, conceptually or by machines, to be experimentally
falsifiable in the Popperian sense (validation problem)

Copyright CC BY–NC-SA 4.0 5



(1) Communication problem: calls for precise sublg of nat lg

Understandability by all stakeholders requires basic ground model lg to
permit to calibrate the degree of precision (the abstraction level) of
descriptions to any given application-domain problem:

express intended system behavior without encoding, directly in terms of

– any kind of objects in the real-world with their properties/relations

• items which constitute arbitrary system ‘states’

– any state changing actions, concurrently performed by any agents

using rigorous application domain concepts

i.e. embrace a most general, accurate notion of state and state change:

in situation do action

‘The extra communication step between the engineer [read: the
domain expert] and the software developer is the source of the most
serious problems with software today.’(Leveson 2012)

Copyright CC BY–NC-SA 4.0 6



(2) Evidence problem: of epistemological character

Ground models are conceptual models which relate real-world features
directly to linguistic elements.

Appropriateness of the association of real-world objects/relations with
model elements cannot be proved by mathematical means.

Leibniz: proportio quaedam inter characteres et res ... est
fundamentum veritatis (evidence problem)

Model inspection can help: reviewing of a ‘blueprint’ (not of code!)

performed in cooperation by application-domain experts and sw experts

supported by experiments with model executions

providing evidence that the direct correspondence between calibrated
model and real-world elements is the desired one (i.e. adequate)

– thus establishing ‘correctness’ wrt intentions

NB. Issue is not ‘declarative vs operational’, but calibration of precision

Copyright CC BY–NC-SA 4.0 7



(3) Validation problem: requires a run concept for models

Ground model justification by inspection

resembles traditional code inspection but

– happens at a higher level of abstraction

– involves both sw and application domain experts

– helps to detect conceptual (not only programming) mistakes

involves two complementary analysis techniques:

– verification: using mathematical reasoning, based upon requirements
assumptions, to establish desired run properties for the model

– validation by repeatable experiments (simulation, testing, running
scenarios), aimed at confirming/falsifying predicted model behavior

Both techniques require that models are executable, can be run
conceptually and/or mechanically (supported by machines)

contrary to widely held view on purely declarative, not executable specs

supporting test oracles and exploratory design development

Copyright CC BY–NC-SA 4.0 8



Step 2. Transforming ground models correctly to code

Appropriate combination of three basic approaches:

direct programming, typically of once-only applications

– using ground model as spec

– correctness by code inspection against the ground model

– easened if pgg lg (e.g. DSL) offers modeling concepts

compilation, typically where requirements keep changing

– write a compiler for a class of to-be-expected ground models

– compiler correctnes implies code correctness from ground model
correctness

• established once, requiring verification expertise

stepwise refinements of models, to manage complexity

– piecemeal de-/composing models into/from simpler constituent parts

– which can be treated separately and (re-) combined

Copyright CC BY–NC-SA 4.0 9



Needed: a practical use of refinement methods

to manage (formulate, justify, document) system design decisions

– turning abstract behavior/properties into (a set, often a series of)
more detailed (implementable) actions/properties

– proving/testing the correctness of the (de-)composition

thus linking, typically through various levels of abstraction, the system
architect’s view (blueprint level) to the programmer’s view (compilable
code level)

to support separation of concerns

– horizontal refinements permit to accurately introduce piecemeal
extensions and adaptations to changing requs or envs

• supporting design for change and system maintenance

– vertical refinements permit to stepwise introduce more and more
details implementing model elements (domains, functions, rules)

• supporting design for reuse and development of design patterns

Copyright CC BY–NC-SA 4.0 10



Why ASMs are appropriate as ground models

Abstract State Machines (ASMs) are finite sets of rules of form

if condition then action

ASM language satisfies the fundamental ground model lg properties:

– direct & general expressivity : any rigorously defined condition and
action involving any objects/properties are allowed

• comprising functional, axiomatic, operational means of desription

– general intelligibility : rules follow a common intuitive scheme to
describe an action to be taken when some condition is satisfied

– unambiguous definition: state transforming effect of such rules has a
precise yet simple definition, supporting an intuitive notion of run

ASMs are executable (conceptually and machine-supported) and thus
can be validated by experiments

ASMs are mathematical objects and thus can be analyzed by
mathematical methods

Copyright CC BY–NC-SA 4.0 11



Why ASMs support practical stepwise system development

ASM refinement concept offers freedom to choose notions of:

abstract/refined state

correspondence bw pairs (S , S∗) of abstract/refined states of interest

abstract/refined computation segments of m/n single abstract/refined
steps τi/σj leading from/to corresponding states of interest

locations of interest and corresponding abstract/refined locs of interest

equivalence of values in corresponding locations of interest

σ1 · · · σn︸ ︷︷ ︸
n steps of M ∗

-State S∗ S∗′

6

?

≡
6

?

≡

-State S S ′

m steps of M︷ ︸︸ ︷
τ1 · · · τm

Copyright CC BY–NC-SA 4.0 12



Models and methods in an ASM-based development process

TEST
CASES

domains
transition system

stepwise
refinement
reflecting
design

dynamic functions
external functions

decisions

manual

mechanized

PROVER

adding assumptionsadding definitions

SIMULATOR

using data from
application domain

Verification

Application Domain Knowledge

Ground Model

Informal Requirements

Code

Validation

+

1
1 (Figure from AsmBook, c© 2003 Springer-Verlag Berlin Heidelberg, reused with permission

Copyright CC BY–NC-SA 4.0 13



Reference

E. Börger:

Why Programming Must be Supported by Modeling and How.

in: T. Margaria and B. Steffen (Eds): ISoLA 2018, pg. 122, Springer
LNCS 11244.
https://doi.org/10.1007/978-3-030-03418-4_6

Copyright CC BY–NC-SA 4.0 14

https://doi.org/10.1007/978-3-030-03418-4_6


Further references

E. Börger: Construction and Analysis of Ground Models and their
Refinements as a Foundation for Validating Computer Based Systems.

Formal Aspects of Computing J. 19 (2007), 225-241

E. Börger: The ASM Refinement Method . ibid. 15 (2003), 237-257

Refinement papers by G. Schellhorn in J.UCS 2001, 2008, TCS 2005,
ENTCS 2008, LNCS 5238

E. Börger and A. Raschke: Modeling Companion for Software
Practitioners. Springer 2018
http://modelingbook.informatik.uni-ulm.de

E. Börger and R. F. Stärk: Abstract State Machines Springer 2003.
pp.X+438. See http://www.di.unipi.it/AsmBook/

R. Stärk, J. Schmid, E. Börger: Java and the Java Virtual Machine.
Definition, Verification, Validation. Springer 2001.
Copyright CC BY–NC-SA 4.0 15

http://modelingbook.informatik.uni-ulm.de
http://www.di.unipi.it/AsmBook/


Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the original authors are mentioned

modified slides are made available under the same licence

the (re-) use is not commercial

Copyright CC BY–NC-SA 4.0 16


