
Egon Börger (Pisa)

Lift Control Problem

A Ground Model and Refinement Exercise

Università di Pisa, Dipartimento di Informatica, boerger@di.unipi.it

Copyright CC BY–NC-SA 4.0 1

Requirements (N.Davis, 1984)

Design the logic to move n lifts bw m floors, and prove it to be well
functioning, where

Each lift has for each floor one button which, if pressed, causes the lift
to visit (i.e. move to and stop at) that floor.

Each floor (except ground and top) has two buttons to request an
up-lift and a down-lift. They are cancelled when a lift visits the floor
and is either travelling in the desired direction, or visits the floor with
no requests outstanding. In the latter case, if both floor request
buttons are illuminated, only one should be cancelled.

A lift without requests should remain in its final destination and await
further requests.

Each lift has an emergency button which, if pressed, causes a warning
to be sent to the site manager. The lift is then deemed out of service.
Each lift has a mechanism to cancel its out of service status.

Copyright CC BY–NC-SA 4.0 2

The involved objects (model signature)

Floor with button(floor , dir) where dir ∈ Direction = {up, down},
bottom, top ∈ Floor , previous/next floor functions +1,-1

Lift with

– button(floor) for each floor ∈ Floor

– emergency button

– mode ∈ {halting ,moving}
– curFloor ∈ Floor , curDir ∈ Direction

Pressing of buttons enters into the model by shared locations:

HasToDeliverAt(floor) iff Pressed(button(floor))

IsCalledFromTo(floor , dir) iff Pressed(button(floor , dir))

These locations are:

read (and reset/cancelled) by lifts

set/pressed by users (the environment)

Copyright CC BY–NC-SA 4.0 3

Behavioral ground model (Lift)

with four actions Depart,Continue,Stop,Change1
1 Figure modified from AsmBook, c© 2003 Springer-Verlag Berlin Heidelberg, reused with permission

Copyright CC BY–NC-SA 4.0 4

Communication with environment (reading input)

Attracted(up) iff forsome floor > curFloor -- same with down, <

HasToDeliverAt(floor) or -- internal button(floor) request

forsome dir ∈ {up, down} IsCalledFromTo(floor , dir)

-- external button(floor , dir) request

CanContinue(dir) iff Attracted(dir) and

not HasToDeliverAt(curFloor and -- no internal request

not IsCalledFromTo(curFloor , curDir) -- no external request

-- priority: keep direction of travel

NB. Keeping the di rection of travel as long as Attracted(dir) easens
the ‘well functioning’ (correctness) proof

namely that each request is served (i.e. each Pressed button(floor) or
button(floor , dir) triggers a lift to move to floor).

Copyright CC BY–NC-SA 4.0 5

Resetting requests once they have been served

CancelRequest(floor , dir) =

HasToDeliverAt(floor) := false -- ‘cancel’ button(floor)

IsCalledFromTo(floor , dir) := false -- ‘cancel’ button(floor , dir)

Wlog assume that initially mode = halting , curFloor = bottom,
curDir = up and HasToDeliverAt , IsCalledFromTo everywhere false.

Constraint: HasToDeliverAt(curFloor) = false when mode = halting

Constraint: IsCalledFromTo false for (bottom, down), (top, up) and
for (curFloor , curDir) when mode = halting .

Copyright CC BY–NC-SA 4.0 6

Analysis of possible runs (of one lift)

L1. Non-empty runs (from the initial state) have the form

(Depart Continue∗ Stop)+

(Change (Depart Continue∗ Stop)∗)∗

L2. Moving from any reachable state, the lift moves floor by floor to
the farest point of attraction in its direction of travel where, after at
most |Floor | steps, it Stops and then either terminates - namely iff it
is not attracted in any direction - or it Changes direction and moves
into the oppositve direction.

L3. When moving to the farest point of attraction in its direction of
travel, the lift Stops at each floor where it is attracted, wrt its
direction of travel, and turns off the (internal) delivery request and the
(external) call from that floor to go into the current direction of travel.
When it Changes, it turns off the (external) call from its current
floor to go into the new direction of travel .

Copyright CC BY–NC-SA 4.0 7

Correctness proof

To show:

– All requests for floors within lifts must be serviced eventually, with
floors being serviced sequentially in the direction of travel.

– All requests for lifts from floors must be serviced eventually, with all
floors given equal priority.

Proof follows from the three lemmas above, since every internal
request from within a lift, and every external request, make the lift
being eventually attracted in the requested direction.

NB. The proof does not exclude real-life situations with crowded lifts,
where requests may be satisfied logically, but the lack of capacity
prevents people from entering the lift. This problem has no logical
solution, and should be solved providing more capacity (larger
bandwith)

Copyright CC BY–NC-SA 4.0 8

Adding emergency trigger: a conservative refinement

Add out-of-service entry rules

Restrict Lift by error guard

if mode ∈ {halting ,moving} and Pressed(emergency)

then

mode := outOfService

EmitWarning

else Lift

Write ErrorHandler to be Triggered in mode = outOfService
and such that when the error is repaired, it calls back the Lift
(presumably in mode = halting or in its initial state).

NB. This refinement type has been used extensively for modeling Java
and the JVM, in particular for exception handling. See:

R. Stärk, J. Schmid, E. Börger Java and the Java Virtual Machine:
Definition, Verification, Validation

Copyright CC BY–NC-SA 4.0 9

Introducing scheduling for multiple lifts

Problem: all lifts attracted by every external call from a floor to a
direction.

Solution: a scheduler assigns ONE Lift to each external call.

Model refinement idea: guarantee that IsCalledFromTo(floor , dir)
becomes true only for the scheduled lift:

– IsCalledFromTo becomes a scheduler/lift interface

• not any more defined by Pressed(button(floor , dir))

– a new shared predicate ExternalCall(from, to) is introduced for the
communication between scheduler and environment.

The scheduler will make its choice among the lifts which are
AppropriateFor the requesting floor and the direction

e.g. near to the floor , ready to move in direction (in particular not
outOfService), possibly not crowded, etc.

To express this computation we use a (here not furthermore specified)
select ion function.
Copyright CC BY–NC-SA 4.0 10

A LiftPool managed by a LiftScheduler

LiftPool = -- synchronized form

forall l ∈ Lift Liftl -- instance Liftl of Lift

LiftScheduler

where

LiftScheduler =

if TriggerFrom(floor , dir) then

let lift = select({l ∈ Lift | AppropriateFor (l ,floor , dir)})
IsCalledFromTolift(floor , dir) := true

Consume(TriggerFrom(floor , dir))

TriggerFrom(floor , dir) iff Pressed(button(floor , dir))

NB. Since IsCalledFromTo is shared with LiftScheduler and not
any more defined by Pressed(button(floor , dir)), one should add to
CancelRequest to also reset button(floor , dir) (and maybe to
inform the scheduler that the assigned task has been performed).
Copyright CC BY–NC-SA 4.0 11

Adding optimization requirements for LiftPool

schedule non-crowded lifts: given the needed info on being Crowded
(e.g. via weight sensors), it suffices to restrict the select ion

– by including into AppropriateFor (l ,floor , dir) the constraint that
not Crowded(l)

lifts reserved for a section [n,m] = {n, n + 1, . . . ,m} and 1:

– setting HasToDeliverAtlift(floor) = false for each other floor
(since for them no internal request buttons are available in such lifts)

– refining the LiftScheduler select ion for each section
button(floor , dir) request

• i.e. floor ∈ {1} ∪ [n,m] except dir = up/down if floor = n/1)

to assign such requests to a LiftReservedFor (l , [n,m])

• by including into AppropriateFor (l ,floor , dir) for each section
button(floor , dir) that l ∈ LiftReservedFor (l , [n,m])

NB.The correctness property is relativized to the served section.

Copyright CC BY–NC-SA 4.0 12

Additional info panel requirement

(From M. Jackson 2001, Sect.7.2,7.3.): Design an info panel in the
lobby, to show waiting guests where the lift is at any time, so that they
will know how long they can expect to wait until it arrives.

The panel has two lamps for each floor .

– There is a square lamp to show that the lift is at the floor, and a
round lamp to show that there is a request outstanding for the lift to
visit the floor.

In addition there are two arrow-shaped lamps to indicate the direction
of travel.

Copyright CC BY–NC-SA 4.0 13

Data refinement for info panel requirement

To model the display requirement, which is formulated only for one lift,
it suffices to add appropriate derived locations to represent the lamps:

currentFloorDisplay(f) = on iff f = curFloor

currentDirectionDisplay(d) = on iff d = curDir

currentRequestDisplay(f) = on iff HasToDeliverAt(f) or

forsome dir ∈ Direction IsCalledFromTo(f , dir)

Obviously, the currentRequestDisplay could be further refined to
indicate also the direction for which the lift IsCalledFromTo.

NB. This is a pure data refinement.

Exercise. Add opening and closing doors as (atomic/durative) action
with error handling in case doors do not open/close.

Copyright CC BY–NC-SA 4.0 14

References to related models

E. Börger, R. Stärk: Abstract State Machines. A Method for
High-Level System Design and Analysis. Springer-Verlag 2003 (Ch.2.3)

For a solution in B which inspired the above ASMs see

J.-R.Abrial: The B-Book . Cambridge University Press 1996 (Sect. 8.3.)

For the Lift info panel requirement see

M. Jackson: Problem Frames. Analyzing and structuring software
development problems. Addison-Wesley 2001

For a Petri net solution see section 4, in particular Fig. 26 pg. 87, of

W. Reisig: Petri Nets in Software Engineering. In: W. Brauer, W.
Reisig, G. Rozenberg (Eds.): Petri Nets: Applications and Relationships
to other Models of Concurrency. Springer LNCS 255 (1987) pp.63-96.

Copyright CC BY–NC-SA 4.0 15

Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the original authors are mentioned

modified slides are made available under the same licence

the (re-) use is not commercial

Copyright CC BY–NC-SA 4.0 16

