
Egon Börger (Pisa)

Leader Election

Ground models and their refinement to CoreASM executable models

Dipartimento di Informatica, Università di Pisa, Italy
boerger@di.unipi.it

See Modeling Companion Ch. 4.3 (refinement variations of the Proxy
programming pattern)

Copyright CC BY–NC-SA 4.0 1



4 examples

We illustrate using ASMs for various leader election requirements

to proceed from natural language requirements to precise models

– a ground model one can justify to be faithful to the requirements

to include additional requirements by ASM refinements

– which one can prove to be correct wrt the ground model

The requirements consider the following backgrounds (data structures)
and computation models:

synchronous leader election in a ring

synchronous leader election in a connected graph with known diameter

asynchronous leader election in a connected graph

asynchronous leader election in a connected graph with computation of
a minimal path to leader

Copyright CC BY–NC-SA 4.0 2



Exl.1: Synchronous leader election in a ring: requirements

... LCR algorithm in honor of Le Lann, Chang, and Roberts ... uses
only unidirectional communication and does not rely on knowledge of
the size of the ring . Only the leader performs an output. The
algorithm uses only comparison operations ...
(Quote from N. Lynch: Distributed Algorithms (1996), Sect. 3.3)

LCR algorithm (informal):

Each process sends its identifier around the ring. When a process
receives an incoming identifier, it compares that identifier to its own.
If the incoming identifier is greater than its own, it keeps passing the
identifier; if it is less than its own, it discards the incoming identifier;
if it is equal to its own, the process declares itself the leader. (ibid.)

Copyright CC BY–NC-SA 4.0 3



From English to ASM: States of LCR (signature)

finite static set of p ∈ Processes (‘agents’) of cardinality > 1

static linear order <⊆ Process × Process (for comparison operations)

static ring structure (for unidirectional communication)

– e.g. bijective function rightNeighb : Process → Process s.t.
rightNeighb(p) 6= p

each p can send msgs to its rightNeighb and receive msgs from its
left neighbor in the ring

Each agent p has:

a mailbox , here also called Proposals , assumed to be initially empty

an output location leader , initially leader = unknown

Agents are assumed to be synchronized in rounds: we model one round
as one step of a parallel ASM SyncLcr.

Msg delivery is assumed to be reliable: msgs sent in round r are received
in round r + 1.

Copyright CC BY–NC-SA 4.0 4



From English to ASM: LCR algorithm

Each process sends its identifier around the ring. When a process
receives an incoming identifier, it compares that identifier to its own.
If the incoming identifier is greater than its own, it keeps passing the
identifier; if it is less than its own, it discards the incoming identifier;
if it is equal to its own, the process declares itself the leader.

This is reflected by successive machine steps:

to first Propose itself as a potential leader by sending—here
once—(an id of) self as leader info to the respective neighbor:

Propose(self) = Send(self, to rightNeighb)

to then repeatedly Check&UpdateLeaderKnowledge, on the
basis of the received msg, until leader 6= undef :

if Received(q) then
if q > self then Propose(q) -- forwards local leader info
if q = self then leader := self -- declares itself the leader
Consume(q)

Copyright CC BY–NC-SA 4.0 5



Flowchart definition of LCR

SyncRingLeaderElect = forall p ∈ Process Lcr(p)

where

Propose(p) = Send(p, to rightNeighb(self))

DeclareLeader = (leader := self)

NB. For conceptual economy, p ∈ Process are used as ‘identifiers’.

Copyright CC BY–NC-SA 4.0 6



SyncRingLeaderElection correctness

Correctness Property. Each SyncRingLeaderElection run,
started in an initial state, leads in finitely many steps to (a state where)

leadermax (Process) = max (Process) (‘output’) and

leaderq = unknown (‘no output’) for every other q

with all processes in mode check and empty mailbox Proposals .

Proof by induction. Use that in each round after the first
Propose(self) step, each time a process p receives a Proposed
message q < p, this msg is not forwarded and the overall number of
sent msgs, which never increases, decreases at least by one. See Lynch
p.29-30.

Copyright CC BY–NC-SA 4.0 7



Exl.2: Sync leader election in a connected graph

The signature (background) of Lcr is adapted as follows:

finite directed graph (Process ,Edge), assumed to be connected

– i.e. there is a path from each p ∈ Process to each q ∈ Process

communication only bw neighbors (i.e. along edges): Neighb(p) is the
set of the processes p is linked to by a directed edge outgoing p

let diameter = max{distance(p, q) | p, q ∈ Process} (derived
location), distance(p, q) = length of shortest path from p to q .
diameter is a static location every process can read.

Requirement (Lynch 4.1): Every process should eventually set its
status to Leader or NonLeader , only max (Process) to Leader wrt
the linear order < of Processes. Initially status = unknown.

Copyright CC BY–NC-SA 4.0 8



Algorithmic idea for sync leader election in connected graphs

Idea (Lynch 4.1): each p ∈ Process

keeps its current (local) leader knowledge in a location cand (‘greatest
process seen so far’)

in synchronized rounds Checks the received Proposals (of current
cands of its Neighbors) to UpdateLeaderKnowl

– which includes to Propose the updated cand value to its
Neighbors

the algorithm will stop after diameter rounds

– again for simplicity we model rounds by parallel ASM steps

Extend signature by:

controlled location cand , for each p, denoting the local leader
knowledge which p sends to its Neighbors; initially candp = p

counter round , initially round = 0

Initially candp = p, round = 0, Proposals = ∅
Copyright CC BY–NC-SA 4.0 9



Reusing Lcr components for connected graphs

Reuse Propose and Check&UpdateLeaderKnowl:

Check&UpdateLeaderKnowl is adapted to

– check a mailbox with possibly multiple msgs, from all neighbors

• instead of only one msg from the left ring neighbor

– update local leader knowledge cand , by max ({cand} ∪ Proposals),
and forward it

• instead of forwarding a larger identifier, received from the left ring
neighbor, to the right ring neighbor

–DeclareLeader sets status of leader = max (Process) to
Leader and status of each p 6= leader to NonLeader

Propose is adapted to Send

– the updated cand value (updated on the basis of Proposals)

– to each q ∈ Neighb

• instead of one received identifier to the rightNeighb

Copyright CC BY–NC-SA 4.0 10



Definition: SyncGraphLeaderElect

if round < diameter then

Check&UpdateLeaderKnowl

Increment(round)

if round = diameter then DeclareLeader

—————————————————————————

Check&UpdateLeaderKnowl =

if Proposals 6= ∅ then

let q = max ({cand} ∪ Proposals) -- choose greatest element

cand := q Propose(q) Empty(Proposals)

Propose(q) = forall p ∈ Neighb Send(q , to p)

DeclareLeader =

if p = cand then status := Leader else status := NonLeader

Increment(round) -- added to stop the run

Copyright CC BY–NC-SA 4.0 11



Correctness of SyncGraphLeaderElection

Correctness Statement (rephrased from Lynch, Theorem 4.1.
p.53): In SyncGraphLeaderElection runs, within diameter
rounds, max (Process) outputs status = Leader and each other process
status = NonLeader .

The proof uses the following Lemma:

forall r ≤ diameter forall p, q ∈ Process

if distance(p, q) ≤ r then candq ≥ p holds after r steps

Proof of the lemma by induction on r .

By the lemma, for each q after diameter steps holds:

candq ≥ max (Process) ≥by definition candq

NB. For a run illustration see Lynch, Course 6.852, Fall 2013, Lect.2,
slides 28-39

Copyright CC BY–NC-SA 4.0 12



Exl.3: Async Leader Election in connected graphs

PlantReq. Consider a network of finitely many linearly ordered Processes
without shared memory, located at the nodes of a directed connected
graph and communicating asynchronously with their neighbors (only).

FunctionalReq. Design and verify a distributed algorithm whose
execution lets every process know the leader.

Algorithmic idea:

StepReq. Every process p maintains its leader knowledge in a record, say
cand (also written candp), denoting the greatest process it has seen so
far (initially itself). The process p alternates between:

Send candp to all its Neighbors

ReceiveMsg q from some neighbor and UpdateKnowl in case
p’s KnowledgeImproved by the received leader information q being
larger than candp.

Copyright CC BY–NC-SA 4.0 13



LeadElect flowchart for AsyncGraphLeaderElect

Propose = forall q ∈ Neighb Send(cand , to q)1

ReceiveMsg = choose q ∈ mailbox -- check msgs one by one

curMsg := q

Consume(q)

KnowledgeImproved iff curMsg > self

UpdateKnowl = (cand := curMsg)
1 Figure c© 2003 Springer Berlin-Heidelberg, reused with permission.

Copyright CC BY–NC-SA 4.0 14



AsyncGraphLeaderElection Behavior Property

let AsyncGraphLeaderElect =

(p,LeadElectp,mailboxp)p∈Process

In properly initialized concurrent AsyncGraphLeaderElect runs,
with reliable communication and without infinitely lazy components,

i.e. every enabled process will eventually make a move

eventually for every p ∈ Process holds:

cand = max (Process) (everybody ‘knows’ the leader wrt <)

mailbox = ∅ (there is no more communication)

mode = check

Copyright CC BY–NC-SA 4.0 15



AsyncGraphLeaderElection Behavior Property: Proof

Index the elements of Process with order-reflecting increasing indeces
p0 < p1 < . . . < pMax .

Consider any run and any p ∈ Process .

Each UpdateKnowl-step of p in the run decreases the discrepancy
Max − index (candp) between the real leader and the leader knowledge
candp of p.

When the discrepancy becomes 0 for every p ∈ Process the claim
follows (by induction).

Copyright CC BY–NC-SA 4.0 16



Exl.4: Async Leader Election with minimal path computation

Additional requirement (BellmanFord algorithm in Lynch 4.3):

Compute for each agent also a shortest path to the leader, providing

a neighbor (except for leader) which is closest to the leader

the minimal distance to the leader (via such a neighbor)

Algorithmic idea: add to cand a nearNeighbor with minimal distance
to the leader candidate

Additional signature for each process:

nearNeighb ∈ Process (initially nearNeighb = self)

dynamic location distance ∈ Distance (initially distance = o) with
static distance(a, b) function for neighbors a, b

Copyright CC BY–NC-SA 4.0 17



Refine LeadElect components by path info

Messages become triples (cand , nearNeighb, dist) whose components
are retrieved by functions fst , snd , third :

Propose = forall q ∈ Neighb

Send((cand , nearNeighb, distance + distance(self, q)), to q)

KnowledgeImproved iff fst(curMsg) > self or

fst(curMsg) = self and third(curMsg) < distance

UpdateKnowl =

cand := curMsg

nearNeighb :=snd(curMsg)

distance :=third(curMsg)

NB. This is a pure data refinement of operations and predicates. The
refinement type (1,1) leaves the program control flow (the above
flowchart for LeadElect) unchanged.

Copyright CC BY–NC-SA 4.0 18



AsyncGraphMinPathToLeader Behavior Property

Define AsyncGraphMinPathToLeader to be the same as
AsyncGraphLeaderElect but with refined LeaderElect
components.

Enrich the AsyncGraphLeaderElection behavior property by:

... eventually for every p ∈ Process holds:

cand = max (Process)

distance = minimal distance of a path from agent to leader

nearNeighbor = a neighbor on a minimal path to the leader (except
for leader where nearNeighbor = leader)

mailbox = ∅
mode = check

Copyright CC BY–NC-SA 4.0 19



Proof of AsyncGraphMinPathToLeader Behavior

Use an induction as for SyncGraphLeaderElect, adding a side
induction on distance.

The side induction works when a process p checks a curMsg from a
neighbor q which

proposes as leader cand but with dist < distance(p)

Then p learns a shorter path to (the up to now best known cand for
the) leader , going through q as new nearNeighb.

NB. compositional proof method resulting from conservative ASM
refinement concept (incremental modular extension)

Copyright CC BY–NC-SA 4.0 20



CoreASM refinement

For a refinement to CoreASM and some characteristic runs see the
CoreASM code, developed in May 2011 by Julian Lettner (FH
Hagenberg, Austria). See

https://github.com/CoreASM/coreasm.core/wiki/Examples

the Modeling Companion website
http://modelingbook.informatik.uni-ulm.de.

Copyright CC BY–NC-SA 4.0 21

https://github.com/CoreASM/coreasm.core/wiki/Examples
http://modelingbook.informatik.uni-ulm.de


Observation

Interpretation of ‘every process knows the leader’ as ‘eventually
cand = max (Process)’ is not a solution that really satisfies in the
context of distributed (truly concurrent) computation

processes do not know when they know the leader

Ring background structure helps to detect termination.

Exercise: Refine LeadElect with the graph background structure to
a machine which also detects the termination of the asynchronous run in
case the number of participating processes is known to each process.

Copyright CC BY–NC-SA 4.0 22



References

Ephraim Korach, Shay Kutten, Shlomo Moran. A Modular Technique
for the Design of Efficient Distributed Leader Finding Algorithms. ACM
Transactions on Programming Languages and Systems 12 (1), 1990

An event-B development appeared in:
J.-R.Abrial, D. Cansell, D. Mery: A mechanically proved and
incremental development of IEEE 1394 tree identify protocol . Formal
Aspects of Computing 14 (2003) 215-227

Nancy A. Lynch, Distributed Algorithms. Morgan Kaufmann, San
Franciso 1996. See also material for course 6.852 at MIT, Fall 2013

E. Börger and A. Raschke: Modeling Companion for Software
Practitioners. Springer 2018
See website http://modelingbook.informatik.uni-ulm.de

Copyright CC BY–NC-SA 4.0 23

http://modelingbook.informatik.uni-ulm.de


Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the original authors are mentioned

modified slides are made available under the same licence

the (re-) use is not commercial

Copyright CC BY–NC-SA 4.0 24


