Egon Borger (Pisa)

| eader Election

Ground models and their refinement to CoreASM executable models

Dipartimento di Informatica, Universita di Pisa, ltaly
boerger@di.unipi.it

See Modeling Companion Ch. 4.3 (refinement variations of the PROXY
programming pattern)

Copyright CC BY-NC-SA 4.0

4 examples

We illustrate using ASMs for various leader election requirements
m to proceed from natural language requirements to precise models
—a ground model one can justify to be faithful to the requirements
m to include additional requirements by ASM refinements
—which one can prove to be correct wrt the ground model

The requirements consider the following backgrounds (data structures)
and computation models:

m synchronous leader election in a ring
m synchronous leader election in a connected graph with known diameter
m asynchronous leader election in a connected graph

m asynchronous leader election in a connected graph with computation of
a minimal path to leader

Copyright CC BY-NC-SA 4.0 2

Exl.1: Synchronous leader election in a ring: requirements

... LCR algorithm in honor of Le Lann, Chang, and Roberts ... uses
only unidirectional communication and does not rely on knowledge of
the size of the ring. Only the leader performs an output. The
algorithm uses only comparison operations ...

(Quote from N. Lynch: Distributed Algorithms (1996), Sect. 3.3)
LCR algorithm (informal):

Each process sends its identifier around the ring. When a process
receives an incoming identifier, it compares that identifier to its own.
If the incoming identifier is greater than its own, it keeps passing the
identifier; if it is less than its own, it discards the incoming identifier;
if it is equal to its own, the process declares itself the leader. (ibid.)

Copyright CC BY-NC-SA 4.0

From English to ASM: States of LCR (signature)

= finite static set of p € Processes (‘agents’) of cardinality > 1
m static /inear order <C Process X Process (for comparison operations)
m static ring structure (for unidirectional communication)

—e.g. bijective function rightNeighb : Process — Process s.t.

rightNeighb(p) # p
meach p can send msgs to its rightNeighb and receive msgs from its

left neighbor in the ring

Each agent p has:
ma mailbox, here also called Proposals, assumed to be initially empty
m an output location leader, initially leader = unknown

Agents are assumed to be synchronized in rounds: we model one round
as one step of a parallel ASM SYNCLCR.

Msg delivery is assumed to be reliable: msgs sent in round 7 are received
in round 7 + 1.

Copyright CC BY-NC-SA 4.0 4

From English to ASM: LCR algorithm

Each process sends its identifier around the ring. When a process
receives an incoming identifier, it compares that identifier to its own.
If the incoming identifier is greater than its own, it keeps passing the
identifier; if it is less than its own, it discards the incoming identifier;
if it is equal to its own, the process declares itself the leader.

This is reflected by successive machine steps:
mto first PROPOSE itself as a potential leader by sending—here
once—(an id of) self as leader info to the respective neighbor:
PrOPOSE(self) = SEND(self, to rightNeighd)
m to then repeatedly CHECK& UPDATELEADERKNOWLedge, on the
basis of the received msg, until leader #* undef:
if Received(q) then
if ¢ > self then PROPOSE(q) -- forwards local leader info
if ¢ = self then [eader := self —- declares itself the leader
CONSUME(q)

Copyright CC BY-NC-SA 4.0 5

Flowchart definition of LCR

SYNCRINGLEADERELECT = forall p € Process LCR(p)

——> send ————> PROPOSE(selff — > check <—— CONSUME(q) |<

|
v
<Received(q) g>self > - PROPOSE(q)

no
yes
q=self P > DECLARELEADER

no

i

W

L4

where
PROPOSE(p) = SEND(p, to rightNeighb(self))
DECLARELEADER = (leader := self)

NB. For conceptual economy, p € Process are used as ‘identifiers’.

Copyright CC BY-NC-SA 4.0

SYNCRINGLEADERELECTION correctness

Correctness Property. Each SYNCRINGLEADERELECTIon run,
started in an initial state, leads in finitely many steps to (a state where)

m leader,;, . (Process) = Maz(Process) (‘output’) and

m [eadery = unknown (‘no output’) for every other g

with all processes in mode check and empty mailbox Proposals.

Proof by induction. Use that in each round after the first
PROPOSE(self) step, each time a process p receives a PROPOSEd
message ¢ < p, this msg is not forwarded and the overall number of
sent msgs, which never increases, decreases at least by one. See Lynch

p.29-30.

Copyright CC BY-NC-SA 4.0

Exl.2: Sync leader election in a connected graph

The signature (background) of LLCR is adapted as follows:
m finite directed graph (Process, Edge), assumed to be connected
—i.e. there is a path from each p € Process to each ¢ € Process

m communication only bw neighbors (i.e. along edges): Neighb(p) is the
set of the processes p is linked to by a directed edge outgoing p

mlet diameter = maz{distance(p, q) | p, ¢ € Process} (derived
location), distance(p, q) = length of shortest path from p to g.
diameter is a static location every process can read.

Requirement (Lynch 4.1): Every process should eventually set its
status to Leader or NonLeader, only max(Process) to Leader wrt
the linear order < of Processes. Initially status = unknown.

Copyright CC BY-NC-SA 4.0

Algorithmic idea for sync leader election in connected graphs

Idea (Lynch 4.1): each p € Process

m keeps its current (local) leader knowledge in a location cand (‘greatest
process seen so far’)

min synchronized rounds CHECKs the received Proposals (of current
cands of its Neighbors) to UPDATELEADERKNOWL

— which includes to PROPOSE the updated cand value to its
Neighbors
m the algorithm will stop after diameter rounds
— again for simplicity we model rounds by parallel ASM steps

Extend signature by:
m controlled location cand, for each p, denoting the local leader
knowledge which p sends to its Neighbors; initially cand, = p

m counter round, initially round = 0

Initially cand, = p, round =0, Proposals = ()

Copyright CC BY-NC-SA 4.0

Reusing LCR components for connected graphs

Reuse PROPOSE and CHECK& UPDATELEADERKNOWL:
s CHECK& UPDATELEADERKNOWL is adapted to
— check a mailbox with possibly multiple msgs, from all neighbors
e instead of only one msg from the left ring neighbor

— update local leader knowledge cand, by max({cand} U Proposals),
and forward it

e instead of forwarding a larger identifier, received from the left ring
neighbor, to the right ring neighbor

— DECLARELEADER sets status of leader = maz(Process) to
Leader and status of each p = leader to NonLeader

m PROPOSE is adapted to SEND
—the updated cand value (updated on the basis of Proposals)
—to each ¢ € Neighb
e instead of one received identifier to the rightNeighb

Copyright CC BY-NC-SA 4.0 10

Definition: SYNCGRAPHLEADERELECT

if round < diameter then
CHECK& UPDATELEADERKNOWL
INCREMENT(round)

if round = diameter then DECLARELEADER

CHECK& UPDATELEADERKNOWL =
if Proposals # () then
let ¢ = max({cand} U Proposals) -- choose greatest element
cand := q¢ PROPOSE(q) EMPTY(Proposals)
PROPOSE(q) = forall p € Neighb SEND(q, to p)
DECLARELEADER =
if p = cand then status := Leader else status := NonLeader
INCREMENT(round) -- added to stop the run

Copyright CC BY-NC-SA 4.0 11

Correctness of SYNCGRAPHLEADERELECTION

Correctness Statement (rephrased from Lynch, Theorem 4.1.
p.53): In SYNCGRAPHLEADERELECTIon runs, within diameter
rounds, max(Process) outputs status = Leader and each other process
status = NonLeader.

The proof uses the following Lemma:

forall » < diameter forall p, g € Process
if distance(p, ¢) < r then cand; > p holds after r steps

Proof of the lemma by induction on 7.
By the lemma, for each ¢ after diameter steps holds:

candy > mazx(Process) >y, definition Candy

NB. For a run illustration see Lynch, Course 6.852, Fall 2013, Lect.2,
slides 28-39

Copyright CC BY-NC-SA 4.0 12

Exl.3: Async Leader Election in connected graphs

PlantReq. Consider a network of finitely many linearly ordered Processes
without shared memory, located at the nodes of a directed connected
graph and communicating asynchronously with their neighbors (only).

FunctionalReq. Design and verify a distributed algorithm whose
execution lets every process know the leader.

Algorithmic idea:

StepReq. Every process p maintains its leader knowledge in a record, say

cand (also written candy), denoting the greatest process it has seen so

far (initially itself). The process p alternates between:

= SEND candy, to all its Neighbors

s RECEIVEMSG ¢ from some neighbor and UPDATEKNOWL in case
p's Knowledgelmproved by the received leader information ¢ being
larger than cand,.

Copyright CC BY-NC-SA 4.0 13

LEADELECT flowchart for ASYNCGRAPHLEADERELECT

@ PROPOSE H@—H@otEmpty(mailbox>

M

no
L
UPDATE Knowledge
o k | ?j><—©e RECEIVEMSSG
yes \mprove

PROPOSE = forall ¢ € Neighb SEND(cand, to q)1

RECEIVEMSG = choose ¢ € mailbox -- check msgs one by one

curMsg = q

CONSUME(q)
KnowledgeImproved iff curMsg > self
UPDATEKNOWL = (cand := curMsg)

! Figure © 2003 Springer Berlin-Heidelberg, reused with permission.

Copyright CC BY-NC-SA 4.0

14

ASYNCGRAPHLEADERELECTion Behavior Property

let ASYNCGRAPHLEADERELECT =
(p, LEADELECT), mailboTp) pc Process

In properly initialized concurrent ASYNCGRAPHLEADERELECT runs,
with reliable communication and without infinitely lazy components,

mi.e. every enabled process will eventually make a move

eventually for every p € Process holds:

m cand = mazx(Process) (everybody ‘knows’ the leader wrt <)
s mailbor = () (there is no more communication)

m mode = check

Copyright CC BY-NC-SA 4.0 15

ASYNCGRAPHLEADERELECTion Behavior Property: Proof

Index the elements of Process with order-reflecting increasing indeces

po<p1<...<PMaz-
Consider any run and any p € Process.

Each UPDATEKNOWL-step of p in the run decreases the discrepancy
Mazx — index(candy) between the real leader and the leader knowledge
candy of p.

When the discrepancy becomes 0 for every p € Process the claim
follows (by induction).

Copyright CC BY-NC-SA 4.0 16

Exl.4: Async Leader Election with minimal path computation

Additional requirement (BellmanFord algorithm in Lynch 4.3):
Compute for each agent also a shortest path to the leader, providing
ma neighbor (except for leader) which is closest to the leader

= the minimal distance to the leader (via such a neighbor)

Algorithmic idea: add to cand a nearNeighbor with minimal distance
to the leader candidate

Additional signature for each process:

m nearNeighb € Process (initially nearNeighb = self)

= dynamic location distance € Distance (initially distance = o) with
static distance(a, b) function for neighbors a, b

Copyright CC BY-NC-SA 4.0 17

Refine LEADELECT components by path info

Messages become triples (cand, nearNeighb, dist) whose components
are retrieved by functions fst, snd, third:

PROPOSE = forall ¢ € Neighb

SEND((cand, nearNeighb, distance + distance(self, q)), to q)
KnowledgeImproved iff fst(curMsg) > self or

fst(curMsg) = self and third(curMsg) < distance
UPDATEKNOWL =

cand = curMsq

nearNeighb :=snd(curMsg)

distance -=third(curMsg)
NB. This is a pure data refinement of operations and predicates. The

refinement type (1,1) leaves the program control flow (the above
flowchart for LEADELECT) unchanged.

Copyright CC BY-NC-SA 4.0

ASYNCGRAPHMINPATHTOLEADER Behavior Property

Define ASYNCGRAPHMINPATHTOLEADER to be the same as

ASYNCGRAPHLEADERELECT but with refined LEADERELECT
components.

Enrich the ASYNCGRAPHLEADERELECTIon behavior property by:
... eventually for every p € Process holds:

m cand = max(Process)

m distance = minimal distance of a path from agent to leader

m nearNeighbor = a neighbor on a minimal path to the leader (except
for leader where nearNeighbor = leader)

m mailboxr = ()
m mode = check

Copyright CC BY-NC-SA 4.0 19

Proof of ASYNCGRAPHMINPATHTOLEADER Behavior

Use an induction as for SYNCGRAPHLEADERELECT, adding a side
induction on distance.

The side induction works when a process p checks a curMsg from a
neighbor ¢ which
m proposes as leader cand but with dist < distance(p)

Then p learns a shorter path to (the up to now best known cand for
the) leader, going through ¢ as new nearNeighb.

m NB. compositional proof method resulting from conservative ASM
refinement concept (incremental modular extension)

Copyright CC BY-NC-SA 4.0 20

CoreASM refinement

For a refinement to CoreASM and some characteristic runs see the

CoreASM code, developed in May 2011 by Julian Lettner (FH
Hagenberg, Austria). See

mhttps://github.com/CoreASM/coreasm.core/wiki/Examples
m the Modeling Companion website

http://modelingbook.informatik.uni-ulm.de.

Copyright CC BY-NC-SA 4.0

https://github.com/CoreASM/coreasm.core/wiki/Examples
http://modelingbook.informatik.uni-ulm.de

Observation

Interpretation of ‘every process knows the leader’ as ‘eventually
cand = max(Process)" is not a solution that really satisfies in the
context of distributed (truly concurrent) computation

m processes do not know when they know the leader

Ring background structure helps to detect termination.

Exercise: Refine LEADELECT with the graph background structure to
a machine which also detects the termination of the asynchronous run in
case the number of participating processes is known to each process.

Copyright CC BY-NC-SA 4.0 22

References

m Ephraim Korach, Shay Kutten, Shlomo Moran. A Modular Technique
for the Design of Efficient Distributed Leader Finding Algorithms. ACM
Transactions on Programming Languages and Systems 12 (1), 1990

= An event-B development appeared in:
J.-R.Abrial, D. Cansell, D. Mery: A mechanically proved and

incremental development of IEEE 1394 tree identify protocol. Formal
Aspects of Computing 14 (2003) 215-227

m Nancy A. Lynch, Distributed Algorithms. Morgan Kaufmann, San
Franciso 1996. See also material for course 6.852 at MIT, Fall 2013
m E. Borger and A. Raschke: Modeling Companion for Software
Practitioners. Springer 2018
See website http://modelingbook.informatik.uni-ulm.de

Copyright CC BY-NC-SA 4.0 23

http://modelingbook.informatik.uni-ulm.de

Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

I.e. in particular under the condition that
m the original authors are mentioned

m modified slides are made available under the same licence

mthe (re-) use is not commercial

Copyright CC BY-NC-SA 4.0

24

