
Egon Börger (Pisa) & Alexander Raschke (Ulm)

Refining Synchronous to Asynchronous ASMs

Extrema Finding Example

Università di Pisa, Dipartimento di Informatica boerger@di.unipi.it
Universität Ulm, Abteilung Informatik alexander.raschke@uni-ulm.de

See Ch. 3.1 of Modeling Companion

Copyright CC BY–NC-SA 4.0 1

Goal

Illustrate how multi-agent ASMs allow one to pass by an ASM
refinement step

from a synchronous (easy to grasp) understanding

to an asynchronous (harder to check) view and from there

to a CoreASM executable version of algorithms/systems

Example: Franklin’s leader election algorithm ExtremaFinding

finitely many processes arranged in a bidirectional ring find out who is
the largest among them

– efficiently, without any central control and passing information only
to the respective two neighbors

Randolph Franklin: On an improved algorithm for decentralized extrema
finding in circular configurations of processors.
Commun. ACM 1982, 25(5) 336-337

Copyright CC BY–NC-SA 4.0 2

Multi-Agent ASMs

A multi-agent ASM M is a family

(ag(p), pgm(p))p∈Process

of single-agent ASMs consisting of a set of Processes p viewed as

agents ag(p) which execute step by step (‘sequentially’)

each its program pgm(p), a finite set of ASM rules

interacting with each other via reading/writing in designated (shared
or input/output) locations

NB. ag and pgm may be dynamic functions.

A concurrent run of a multi-agent ASM M is a sequence
(S0,P0), (S1,P1), . . . of states Sn and subsets Pn ⊆ Process such that
each state Sn+1 is obtained from Sn by applying to it the updates
computed by the processes p ∈ Pn

Copyright CC BY–NC-SA 4.0 3

ConcurrencyPattern(Process) =

forall p ∈ Process ConcurStep(p)

ConcurStep(p) = -- may be publicly visible or local

if mode = public then choose step ∈ {publicStep, publicRead}
if step = publicStep

then PublicExec(p) -- read&write interaction (synchronized)

else

ReadPublicData(p) -- read interaction (synchronized)

mode := local -- switch to local (not publicly visible) step

if mode = local then choose step ∈ {localStep, publicWrite}
if step = localStep then LocalExec(p) -- asynchronous step

else

WriteBack(p) -- write interaction (synchronized)

mode := public -- switch to next read/write interaction

Copyright CC BY–NC-SA 4.0 4

Extrema Finding Requirements (1)

Plant&FunctionalReq. Finding without a central controller the largest
element in a bidirectional ring of processes whose size N is not known in
advance.

BeingActiveReq. We will define an inactive process as one that knows
that it is not the largest; the other processes are active.

ActiveNeighbReq. The two neighbors of an active process are those
active processes closest to it in each direction along the ring. In the
degenerate case of a ring with only two active processes, each becomes
the two neighbors of the other; similarly, if there is only one active
process, it becomes both of its neighbors.

ExchangeInfoReq. Each active process sends a message with its value to
each of its neighbors and receives such messages from its two active
neighbors. If either of the messages it receives is larger than its value,
then it makes itself inactive.

Copyright CC BY–NC-SA 4.0 5

Extrema Finding Requirements (2)

ForwardInfoReq. The process of sending a message to an active neighbor
is apparently complicated by the fact that a given process does not know
the exact locations of its active neighbors. This is, in fact, no problem if
we pass messages by the convention that inactive processes simply pass
on received messages from either direction in the same direction, while
active processes do not.

StepReq. Thus, during each step every inactive process receives and
forwards two messages, while each active process transmits and receives
two messages.

TerminationReq. The repetition of steps terminates when in some step a
process receives a message from itself; this implies that it is the only
active process left and that its value is the largest of the set. As a final
action, that process announces that fact to all the other processes in N
message passes.

Copyright CC BY–NC-SA 4.0 6

Static background structure

Plant&FunctionalReq Finding ... the largest element in a bidirectional
ring of processes whose size N is not known in advance.

Process = {po, . . . , pN−1} with

linear order > (‘being larger than’)

ring structure:

l , r : Process → Process satisfying for 0 ≤ i < N − 1
l(p0) = pN−1 l(pi+1) = pi
r (pi) = pi+1 r (pN−1 = p0)

modep ∈ {active, inactive, terminated}. Initially modep = active

– values (in)active by BeingActiveReq

– value terminated to reflect the terminiation described by
TerminationReq

Copyright CC BY–NC-SA 4.0 7

Information exchange assumptions

all processes perform their ‘steps’ synchronized in rounds

in each round every process

– receives two messages (by StepReq)

• fromRightMsgp (initially undef), sent (in the previous round) by
the right neighbor (ExchangeInfoReq and ForwardInfoReq)

• fromLeftMsgp (initially undef) sent (in the previous round) by
the left neighbor (ExchangeInfoReq and ForwardInfoReq)

– sends (by StepReq transmits or forwards) two messages, one message
to each neighbor (by ExchangeInfoReq and ForwardInfoReq)

message delivery is

– reliable: no message gets lost or corrupted

– immediate: a message sent in a round by a process, to its left or right
neighbor, is received and read by the addressee in the next round

Copyright CC BY–NC-SA 4.0 8

Modeling the ExchangeInfoRequirement

ExchangeInfo =

if mode = active then

TransmitInfo(self) -- see below for a restriction

CheckForLargerMsg(self)

where

TransmitInfo(p) = -- p sends ‘its value’

fromRightMsgl(p) := p -- to its left neighbor

fromLeftMsgr (p) := p -- to its right neighbor

CheckForLargerMsg(p) = -- p reads & checks received msgs

CheckWhetherLarger(p, fromLeftMsgp)

CheckWhetherLarger(p, fromRightMsgp)

CheckWhetherLarger(p,msg) =

if msg > p then modep := inactive

Copyright CC BY–NC-SA 4.0 9

Modeling the ForwardInfoReq for inactive processes

... inactive processes simply pass on received messages from either
direction in the same direction, while active processes do not.

ForwardInfo =

if mode = inactive then PassMsgs(self)

where

PassMsgs(p) = -- ‘in the same direction’

fromRightMsgl(p) := fromRightMsgp -- from right to left

fromLeftMsgr (p) := fromLeftMsgp -- from left to right

Copyright CC BY–NC-SA 4.0 10

Modeling TerminationReq for active processes

... terminates when ... a process receives a message from itself
p ‘receives a msg from itself’ means msg = p.

this implies that ... its value is the largest of the set
We distinguish ‘the largest of the set’ by setting an attribute
recognizedAsLargestp to true.

... final action ... announces that fact to all ... processes
We describe the termination ‘announcement’ ‘to all the other
processes’ using a ForwardNotify component.

– for simplicity, instead of msg passing we use a location notified
which is shared between p and its right neighbor

‘final action’ is translated by modep := terminated

The CheckNotifyLeaderDetected(p) component expresses the
above, together with a rule to forward the notification.

Copyright CC BY–NC-SA 4.0 11

Leader Detection and Notification

CheckNotifyLeaderDetected(p) =

NotifyLeaderDetected(fromLeftMsgp)

NotifyLeaderDetected(fromRightMsgp)

NotifyLeaderDetected(msg) =

if msg = self then -- process receives a msg from itself

recognizedAsLargestself := true -- is the largest of the set

FinalAction(self)

FinalAction(p) =

notifiedr (p) := true -- right neighbor is notified

modep := terminated -- terminates with ‘final’ action

The rule to forward the notification is as follows:

if modep = inactive and notifiedp = true then FinalAction(p)

Copyright CC BY–NC-SA 4.0 12

Result: Synchronous ExtremaFinding ground model

TerminationReq requests to stop the ‘repetition of steps’ once a process
has been recognizedAsLargest :

for inactive processes disable ForwardInfo rule when notified

for active p guard TransmitInfo by not recognizedAsLargest(p)

ExtremaFinding = forall p ∈ Process

if modep = active then

if not recognizedAsLargestp then TransmitInfo(p)

CheckForLargerMsg(p)

CheckNotifyLeaderDetected(p)

if modep = inactive then

if notifiedp = true then FinalAction(p)

else PassMsgs(p)

Data refinement leads to CoreASM executable model (Soldani 2014)

Copyright CC BY–NC-SA 4.0 13

Why refine ExtremaFinding to an asynchronous ASM

The StepReq leading to the forall synchronization easens the
complexity analysis of the ExtremaFinding algorithm.

But for a truly distributed algorithm

– Plant&FunctionalReq: the algorithm should work ‘without a central
controller’, excluding a common clock

an asynchronous model appears to be more appropriate.

In an asynchronous model

– sending a message (via TransmitInfo or PassMsgs)

– receiving a message and CheckForLargerMsg or check the
leader detection in NotifyLeaderDetected

happen without synchronization.

Copyright CC BY–NC-SA 4.0 14

How to turn ExtremaFinding into an asynchronous ASM

Idea: refine fromRightMsg and fromLeftMsg locations to mailboxes
FromRightMsgs resp. FromLeftMsgs .

Assumptions on Concurrent Extrema Finding Runs (implicitly made
already in the ExtremaFindingReq) to preserve correctness:

Every process which is enabled will eventually perform a step.

No msgs are lost or corrupted and msgs arrive in sending order.

Consequence:

mailboxes FromRightMsgs ,FromLeftMsgs are queues

fromRightMsg := q is refined to Enqueue(q ,FromRightMsgs)
(same with Left)

readings of fromRightMsg are refined to readings of
head(FromRightMsgs) (the same with Left)

implicit fromRight/LeftMsg overwriting refined to Dequeue

Copyright CC BY–NC-SA 4.0 15

ConcurExtremaFinding program

ConcurExtremaFinding =

-- same structure as ExtremaFinding

if mode = active then

if not recognizedAsLargest then AsyncTransmitInfo

forall q ∈ {FromLeftMsgs ,FromRightMsgs} -- for both queues

if q 6= [] then

CheckWhetherLarger(self, head(q))

NotifyLeaderDetected(self, head(q))

Dequeue(q) -- remove msg head(q)

if mode = inactive then

if notified = true

then FinalAction

else AsyncPassMsgs

Copyright CC BY–NC-SA 4.0 16

Submachines of ConcurExtremaFinding

AsyncTransmitInfo(p) = -- p sends ‘its value’

Enqueue(p,FromRightMsgsl(p)) -- to the left neighbor

Enqueue(p,FromLeftMsgsr (p)) -- to the right neighbor

AsyncPassMsgs(p) =

if FromRightMsgsp 6= [] then

Enqueue(head(FromRightMsgsp),FromRightMsgsl(p))

Dequeue(FromRightMsgsp)

if FromLeftMsgsp 6= [] then

Enqueue(head(FromLeftMsgsp),FromLeftMsgsr (p))

Dequeue(FromLeftMsgsp)

For the CoreASM executable refinement see op.cit. Soldani 2014

Copyright CC BY–NC-SA 4.0 17

Refinement correctness for ConcurExtremaFinding (1)

Let any pair of ExtremaFinding/ConcurExtremaFinding
runs be given, started in equivalent initial states.

Due to the simple msg producer/consumer protocol among neighbors,
the corresponding actions of interest are the following ones (disregard
trivial notification subprocess):

for active processes: corresponding send actions in TransmitInfo
resp. AsyncTransmitInfo and corresponding checks in

–CheckWhetherLarger(self,msg)

–NotifyLeaderDetected(msg)

concerning corresponding locations of interest with related updates

for inactive processes pairs of an abstract send action (with implicit
overwrite) and the corresponding refined Enqueue (together with
the explicit Dequeue).

Copyright CC BY–NC-SA 4.0 18

Correctness proof for ConcurExtremaFinding (2)

Since messages are not lost, arrive in order and with their original
content, the update effects of corresponding actions on the
corresponding locations of interest are equivalent.

Note that one abstract double-check action
CheckForLargerMsg may split in the refined model into two
separate check-actions CheckWhetherLarger(self, head(q)),
for each neighbor’s mailbox q .

– But this does not affect the combined result of the two actions.

The same holds for NotifyLeaderDetected.

The refinement correctness preserves the correctness of the abstract
machine.

Copyright CC BY–NC-SA 4.0 19

References

Randolph Franklin: On an improved algorithm for decentralized
extrema finding in circular configurations of processors.
Commun. ACM 1982, 25(5) 336-337

Jacopo Soldani: Modeling Franklins Improved Algorithm For
Decentralized Extrema Finding In Circular Configurations Of
Processors.
Computer Science Department of University of Pisa, Internal Report
January 2014. The CoreASM code for the algorithm can be accessed
via https://github.com/szenzaro/WebASM/blob/master/src/

main/ide/ExtremaFinding.casm or the website
http://modelingbook.informatik.uni-ulm.de

E. Börger and A. Raschke: Modeling Companion for Software
Practitioners. Springer 2018.
http://modelingbook.informatik.uni-ulm.de

Copyright CC BY–NC-SA 4.0 20

https://github.com/szenzaro/WebASM/blob/master/src/main/ide/ExtremaFinding.casm
https://github.com/szenzaro/WebASM/blob/master/src/main/ide/ExtremaFinding.casm
http://modelingbook.informatik.uni-ulm.de
http://modelingbook.informatik.uni-ulm.de

Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the two original authors are mentioned

modified slides are made available under the same licence

the (re-) use is not commercial

Copyright CC BY–NC-SA 4.0 21

