Definition of ASMs

Syntax and Semantics

Università di Pisa, Dipartimento di Informatica, boerger@di.unipi.it
Universität Ulm, Abteilung Informatik, alexander.raschke@uni-ulm.de

See Ch. 7 of Modeling Companion
http://modelingbook.informatik.uni-ulm.de
Syntax: ASM program/rule (over given signature Σ)

Update rule: $f(t_1, \ldots, t_n) := t$ is an ASM program
- for every n-ary function symbol $f \in \Sigma$ where $n \geq 0$ and t_i, t are expressions (terms) over Σ
- meaning: evaluate (t_1, \ldots, t_n, t), use the result (a_1, \ldots, a_n, a) to update the interpretation of f at argument (a_1, \ldots, a_n) to value a.

Conditional rule: if Condition then P else Q is an ASM program
- for each Boolean expression Condition and ASM programs P, Q
- meaning: if Condition evaluates to true execute P, otherwise Q.

Block (Par) rule: $P \text{ par} Q$ is an ASM program
- for any ASM programs P, Q
- meaning: execute P and Q in parallel, simultaneously in the given state.
Let rule: \textbf{let } x = t \textbf{ in } P \text{ is an ASM program }

- for each expression (term) \(t \) and ASM program \(P \)
- meaning: evaluate \(t \), assign the computed value to \(x \) and then execute \(P \) with this value for \(x \) (‘call by value’).

NB. The scope of \(x \) is \(P \).

Call (Macro) rule: \(Q(t_1, \ldots, t_n) \) is an ASM program

- for every rule declaration \(Q(x_1, \ldots, x_n) = P \) where
 - \(P \) is an ASM program
 - \(t_i \) are expressions
 - all free variables in \(P \) are among \(x_1, \ldots, x_n \)
- meaning: execute \(Q \) with parameters \((t_1, \ldots, t_n)\) (‘call by name’).
Syntax: choose and forall programs

Forall rule: \textbf{forall }x \textbf{ with } \textit{Property} \textbf{ do } P \textbf{ is an ASM program}
- for each Boolean-valued expression \textit{Property} and ASM program \(P \)
- meaning: execute simultaneously every \(P(x) \) where \(x \) satisfies the \(\textit{Property}(x) \) (in the given state).

NB. The scope of \(x \) ranges over \textit{Property} and \(P \).

Choose rule: \textbf{choose }x \textbf{ with } \textit{Property} \textbf{ do } P \textbf{ is an ASM program}
- for each Boolean-valued expression \textit{Property} and ASM program \(P \)
- meaning: choose an \(x \) satisfying \(\textit{Property}(x) \) and execute with it \(P(x) \).

NB. The scope of \(x \) ranges over \textit{Property} and \(P \).
Signature (vocabulary) Σ (of an ASM program) is a set of function symbols f^n of arity $n \geq 0$ (comprising all those which occur in the expressions of the ASM program)
– including 0-ary functions (constants) $true, false, undef$ (static)
– possibly including a 0-ary (dynamic) function $self$
– possibly including a (dynamic) unary function new
Predicates/Relations are treated as characteristic functions (with values in $\{true, false, undef\}$)
Sometimes $skip$ is used as ASM program which does nothing

An ASM is defined over a signature by a main program (with name of arity 0), a set of rule declarations and a set of initial states.
A 'derived' \(f \) has a fixed definition for each \(f(x) \). For 'controlled' \(f \), each \(f(x) \) can be read and written by and only by the given ASM program \(P \). For 'monitored' resp. 'out' \(f \), \(f(x) \) is read-only resp. write-only for \(P \).\(^1\)

\(^1\) Figure from AsmBook, © 2003 Springer-Verlag Berlin Heidelberg, reused with permission
A domain (superuniverse) D together with an interpretation of each function symbol f^n in Σ as a function $f_S : D^n \rightarrow D$ is called a state S (of the given ASM program) with $true$, $false$, $undef$ interpreted by pairwise distinct elements.

Expressions t are evaluated in state S in the usual way, denoted by $\text{eval}(t, S, env)$.

- The environment is an interpretation of all free variables (in the given ASM program) by elements of the superuniverse.
- S and/or env are omitted if they are clear from the context.

Elements of the superuniverse are also called elements of a state.

States (the function interpretation) may change, but the superuniverse does not change (see Reserve set below).
State changes by sets of function updates

- a location (in S) is a pair $(f^n, (v_1, \ldots, v_n))$ (memory unit)
 - with $f^n \in \Sigma$ and elements v_i (of S)
- $f^n_S(a_1, \ldots, a_n)$ is called content of l in S, denoted $S(l)$
 - f is called the function symbol of l, denoted $fctSymbol(l)$
- an update (in S) is a location/value pair (l, v) where
 - $l = (f^n, (v_1, \ldots, v_n))$ is a location (of S)
 - v is an element (in S), -- used as value to update the content of l
- an update set is a set of updates
- an update set is consistent if it does not contain two updates for the same location (i.e. with different values)
- firing an update set U in state S yields the sequel $S + U$ of S whose content of any location l is defined by:

$$S + U(l) = \begin{cases} v & \text{if there is some } (l, v) \in U \\ S(l) & \text{if there is no } (l, v) \in U \end{cases}$$
The current state S of a given ASM program is denoted by currstate.

- currstate is viewed as a derived function.
- currstate is implicitly parameterized by an ASM program or a program executing agent.

The values of currstate can be seen in two ways:

- structurally: as a family of function tables over D: $(D, (f_S)_{f \in \Sigma})$ — what in logic is called an algebra (or Tarski structure)
- elementwise: as the set of all memory units

$$((f, (v_1, \ldots, v_n)), f_S(v_1, \ldots, v_n))$$

over D and Σ with their value, i.e. pairs of locations with their content
ASM program semantics: computed update sets

An ASM \(P \)rogram \(Yields \) in a \(S \)tate with a given \(env \)ironment (interpretation of its free variables) an \(U \)pdate set recursively:

\[
Yields(\text{skip}, S, env, \emptyset) \quad -- \text{skip does nothing}
\]

\[
Yields(f(t_1, \ldots, t_n) := t, S, env, \{(f, (v_1, \ldots, v_n)), v\}) \quad -- \text{assign}
\]

where \(v_i = \text{eval}(t_i, S, env) \) and \(v = \text{eval}(t, S, env) \)

\[
Yields(\text{if Cond then } P \text{ else } Q, S, env, U) \quad \text{if}
\]

\[
Yields(P, S, env, U) \text{ and eval(Cond, S, env) = true}
\]

\[
\text{or } Yields(Q, S, env, U) \text{ and eval(Cond, S, env) = false}
\]

\[
Yields(P \text{ par } Q, S, env, U \cup V) \quad \text{if}
\]

\[
\text{Upd}(P, S, env, U) \text{ and Upd}(Q, S, env, V)
\]

Copyright CC BY–NC-SA 4.0
ASM program semantics: let, forall, Call

\[\text{Yields}(\text{let } x = t \text{ in } P, S, env, U) \text{ if} \]
\[\text{Yields}(P, S, env[x \mapsto \text{eval}(t, S, env)], U) \quad \text{-- call by value} \]

\[\text{Yields}(\text{forall } x \text{ with Prop do } P, S, env, \bigcup_{a \in I} U_a) \text{ if} \]
\[\text{forall } a \in I \text{ Yields}(P, S, env[x \mapsto a], U_a) \]
\[\text{where } I = \{ a \mid \text{eval}(\text{Prop}(a), S, env[x \mapsto a]) = \text{true} \} \quad \text{-- forall} \]

\[\text{Yields}(Q(t_1, \ldots, t_n), S, env, U) \text{ if} \]
\[\text{Yields}(P(x_1/t_1, \ldots, x_n/t_n), S, env, U) \]
\[\text{where } Q(x_1, \ldots, x_n) = P \text{ is a rule declaration} \quad \text{-- call by name} \]

NB. Up to here, \(U \) is even a function of \(P, S, env \). There is no non-determinism. So one can write \(U = \text{Upd}(P, S, env) \) instead of \(\text{Yields}(P, S, env, U) \).
Yields\((\textbf{choose } x \textbf{ with } \textit{Prop} \textbf{ do } P, S, env, U)\)

\hspace{1cm} \text{if forsome } a \textbf{ with } \textit{eval}(\textit{Prop}(a), S, env[x \mapsto a]) = \textit{true} \\
\hspace{1cm} \text{Yields}(P, S, env[x \mapsto a], U) \\

Yields\((\textbf{choose } x \textbf{ with } \textit{Prop} \textbf{ do } P, S, env, \emptyset)\) -- if no choice do nothing

\hspace{1cm} \text{if forall } a \textbf{ eval}(\textit{Prop}(a), S, env[x \mapsto a]) = \textit{false}
An ASM with main rule P can make a move (or step) from state S (with given env) to the sequel state $S' = S + U$, written $S \Rightarrow_P S'$, if $Yields(P, S, env, U)$ for a consistent set U of updates.

The updates in U are called internal to distinguish them from updates of monitored or shared locations; the sequel is called the next internal state.

A run or execution of P is a finite or infinite sequence S_0, S_1, \ldots of states (of the signature of P) such that

- S_0 is an initial state,
- for each n
 - either $S_n \Rightarrow_P S'_n$ and $S_{n+1} = S'_n + U$ with a consistent update set U produced by the environment for monitored or shared locations
 - or P cannot make a move in state S_n (i.e. produces an inconsistent update set). In this case S_n is called the last state in the run.
Reserve set and the function `new`

- `new (X)` provides a ‘fresh’ element and makes it an element of X
- ‘Fresh’ elements come from a (dynamic) Reserve set which contains elements of a state that are not in the domain or range of any basic function of the state.
- Parallel calls of `new` are assumed to provide different elements.

The effect of `let x = new (X) in P` is often described by:

```
import x do
    X(x) := true
    P
```

with corresponding `import` rules. See AsmBook for details.
A multi-agent ASM \mathcal{M} is a family
\[(ag(p), pgm(p))_{p \in \text{Process}}\]
of single-agent ASMs consisting of a set of Processes p viewed as
- agents $ag(p)$ which execute step by step (‘sequentially’)
- each its ASM program $pgm(p)$ (of signature Σ_p)
- interacting with each other via reading/writing in designated (shared or input/output) locations.

$ag : \text{Process} \rightarrow \text{Agent}$, $pgm : \text{Process} \rightarrow \text{AsmRule}$ may be dynamic.
Atomic reads/writes in concurrent ASM runs

- A single agent ASM
 - performs in each state S_n of a run both, reads and writes, as one read&write step (one atomic action) resulting in the sequel state S'_n
 - is synchronized with its environment which (in one atomic step) updates S'_n to the next state S_{n+1} in the run.

- In concurrent ASM runs, different agents
 - may perform their read/write actions asynchronously, reading in one state and writing to another state, each agent at its own speed,
 - interact via reads/writes of interaction (i.e. in/shared/out) locations.

- Thus we emulate an atomic read&write step of $pgm(p)$ by a program $ConcurStep(pgm(p))$ to perform either directly this atomic read&write step of $pgm(p)$ or three consecutive atomic actions:
 - read&SaveGlobalData, LocalWriteStep, WriteBack
 which in a concurrent run may happen asynchronously, in different states (at different moments of time).
Multi-Agent ASM: Semantics

A concurrent run of a multi-agent ASM \mathcal{M} is
- a sequence $(S_0, P_0), (S_1, P_1), \ldots$ of states S_n, subsets $P_n \subseteq \text{Process}$
- such that each state S_{n+1} is obtained from S_n by applying to it all the updates computed by any process $p \in P_n$
 - formally $S_{n+1} = S_n + \bigcup_{p \in P_n} U_p$ where for given environment $Yields(\text{ConcurStep}(\text{pgm}(p)), S_n, env, U_p)$ holds.

The run terminates in state S_n if the updates computed by the agents in P_n are inconsistent.

NB. We define $\text{ConcurStep}(\text{pgm}(p))$ such that each of its possible substeps (which together emulate one read&write step of $\text{pgm}(p)$), when executed by $p \in P_n$, is an atomic single-agent read&write step in S_n.

NB. The signature of states is the union of Σ_p for all $p \in \text{Process}$.
Interactive and local states in concurrent ASM runs

When \(p \in P_n \) contributes to build \(S_{n+1} \) by executing one of the \texttt{ConcurSteps} of \(\text{pgm}(p) \), it is in one of three (resp. two) modes:

- in \textit{interactive} mode \(p \) reads in state \(S_n \) the data needed to perform the step described by the given \(\text{pgm}(p) \). To build \(S_{n+1} \) out of \(S_n \):
 - either \(p \) directly computes its update set \(U_p \), in \(S_n \), and applies it to \(S_n \), possibly updating some interaction locations
 - or \(p \) does \texttt{SaveGlobalData} locally and switches to locally compute \(U_p \), updating only local locations

- in \textit{localEmulation} mode \(p \) computes a local copy of \(U_p \), using the previously saved global data, and switches to \texttt{WriteBack} to interaction locations, updating only local locations

- in \textit{writeBack} mode \(p \) will \texttt{WriteBack} to those (globally visible) interaction locations whose values it has updated locally (by executing an assignment \(f_p(s) := t \) in its preceding mode = \textit{localEmulation}).

NB. In the 2-step version \textit{writeBack} mode is suppressed.
Three-step version of **ConcurStep**\((pgm)\)

LOCALWriteStep\((pgm)\) results from replacing in *pgm*

- every in/shared/out function symbol \(f\) by a new local function symbol \(f_p\), where \(p = ag(pgm)\) (used to locally **SAVEGLOBALDATA**)
- adding **INSERT**\((updData(f_p, s, t), GlobalUpd)\) in parallel to each \(f_p(s) := t\) (used to define **WRITEBACK** to shared/out locations)
Two-step version of $\text{ConcurStep}(pgm)$

choose $M \in \{\text{Read\&WriteStep}(pgm), \text{ReadStep}(pgm)\}$

if $mode = \text{localEmulation}$ **then**

$\text{LocalEmulation}(pgm)$
$mode := \text{interactive}$

where

$\text{Read\&WriteStep}(pgm) =$

if $mode = \text{interactive}$ **then** pgm

$\text{ReadStep}(pgm) =$

if $mode = \text{interactive}$ **then**

$\text{SaveGlobalData}(pgm)$
$mode := \text{localEmulation}$

$\text{LocalEmulation}(pgm) =$

$\text{LocalWriteStep}(pgm) \; \text{seq} \; \text{WriteBack}(pgm)$

NB. Turbo ASM operator `seq` guarantees atomic 1-step execution.
Submachines of ConcurStep\((p) \)

\(\text{SaveGlobalData}(pgm) \) and \(\text{WriteBack}(pgm) \) transfer values between the globally visible interaction functions and their local copies.

- \(\text{SaveGlobalData}(pgm) \) copies the current values of monitored and shared function terms \(f(t) \) of \(pgm \) into a local copy \(f_p(t) \) which is controlled by \(p \) (\(p = \text{self} = ag(pgm) \)):

\[
\text{SaveGlobalData}(pgm) = \forall f \in \text{Monitored} \cup \text{Shared} \, f_p := f
\]

NB. \(f := g \) abbreviates \(\forall \text{args} \, f(\text{args}) := g(\text{args}) \)

- \(\text{WriteBack}(pgm) \) is the inverse copying, of the just updated local values for output and shared function terms, back to the ‘global’ terms in \(pgm \) (NB. \(\text{GlobalUpd} \) is local, controlled by \(p = \text{self} \)):

\[
\text{WriteBack}(pgm) = \\
\forall \text{updData}(f_p, s, t) = ((f_p, \text{args}), \text{val}) \in \text{GlobalUpd} \\
f(\text{args}) := \text{val} \\
\text{GlobalUpd} := \emptyset \quad \text{-- } \text{GlobalUpd \ assumed to be initially empty}
\]
Ambient ASMs

- Syntax extension: `amb exp in P` is an ASM program
 - for each expression and ASM program `P`
- Function classification extension:

 \[
 \text{AmbDependent}(f) \text{ iff } \text{forsome } e, e' \text{ with } e \neq e' \text{ forsome } x \ f(e, x) \neq f(e', x)
 \]
 Otherwise `f` is called `AmbIndependent`.
- `eval` extension by ambient parameter: see below
- Semantics extension:
 to avoid a signature blow up by dynamic ambient nesting, we treat `amb` as a stack where new ambient expressions are `pushed` (passed by value):

 \[
 \text{Yields}(\text{amb exp in } P, S, \text{env, amb, U) if } \text{Yields}(P, S, \text{env}, \text{PUSH(eval(exp, S, env, amb), amb), U})
 \]

Copyright CC BY–NC-SA 4.0
evaluation function extension by ambient parameter:

Case AmbDependent(f):

\[\text{eval}(f(t_1, \ldots, t_n), S, \text{env}, \text{amb}) = \]
\[f_S(\text{amb}, \text{eval}(t_1, S, \text{env}, \text{amb}), \ldots, \text{eval}(t_n, S, \text{env}, \text{amb})) \]

Case AmbIndependent(f):

\[\text{eval}(f(t_1, \ldots, t_n), S, \text{env}, \text{amb}) = \]
\[f_S(\text{eval}(t_1, S, \text{env}, \text{amb}), \ldots, \text{eval}(t_n, S, \text{env}, \text{amb})) \]

NB. Since often the interpretation \text{env} of free variables is omitted, the \text{ambient} is called the \text{environment}.

Copyright CC BY–NC-SA 4.0
References

- E. Börger and A. Raschke: Modeling Companion for Software Practitioners. Springer 2018
 http://modelingbook.informatik.uni-ulm.de

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

- the original authors are mentioned
- modified slides are made available under the same licence
- the (re-) use is not commercial