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General Information

• Developed by Farahbod Roozbeh et al. from 2005 to 2010 as 

PhD-thesis at Simon Fraser University, Vancouver, Canada.

• Open-source tool (Java 1.7)

• Source code (and documentation) available at 

https://github.com/coreasm

• General Idea: 

• minimal core and everything else is implemented as a 

plugin (even ConditionalRule (if-then-else) is a plugin!)

• Easy to extend and very flexible possibilities

• Set of plugins already shipped with installation

(see user manual at https://github.com/CoreASM/

coreasm.core/raw/master/org.coreasm.engine/rsc/doc/

user_manual/CoreASM-UserManual.pdf)

https://github.com/coreasm
https://github.com/CoreASM/coreasm.core/raw/master/org.coreasm.engine/rsc/doc/user_manual/CoreASM-UserManual.pdf
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CoreASM overview

CoreASM

CoreASM engine

- Parser, Interpreter, Abstract Storage, Schedulers

- Basic plugins: Block, Conditional, Forall, …

- Standard plugins: TurboASM, Signature (types), …

- Additional plugins: Time, Scheduling, Math, …

Carma

command line interface

eclipse plugin(s)

- project integration

- editor

- debugger
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Installation

• Easiest way to get CoreASM is via eclipse marketplace:

https://marketplace.eclipse.org/content/coreasm-eclipse-

plugin

https://marketplace.eclipse.org/content/coreasm-eclipse-plugin
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Getting started

• First, you have to create a new (general) project in eclipse
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Getting started

• In this new project container, you can create

a CoreASM specification
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First example: Railroad crossing

comingcrossing

dmin < x < dmax

emptyTrackStatus:

dclose

dopen

waittime = dmin - dclose

deadline
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First example: Railroad crossing

emptyTrackStatus:

deadline

coming
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First example: Railroad crossing

TrackStatus:

deadline

coming



page 10

First example: Railroad crossing

TrackStatus:

deadline

comingcrossing
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First example: Railroad crossing

TrackStatus:

deadline

crossing empty
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First example: Railroad crossing

TrackStatus:

deadline

empty
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From Mathematical Notation to Executable Specifications

E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System Design and Analysis. Springer, 2003
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From Mathematical Notation to Executable Specifications

E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System Design and Analysis. Springer, 2003
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First example in CoreASM

CoreASM RailRoadCrossing

use StandardPlugins
use TimePlugin
use MathPlugin

Every specification must 

start with this keyword

This name is arbitrary;

it is recommended to

choose a useful name

StandardPlugins is a collection of

several plugins; it is recommended

to use it in every specification

TimePlugin provides a monitored function

"now" representing the current system

time (incremented after every step)

MathPlugin is used to

calculate with NUMBERs
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don't miss the

"par"/"endpar" keywords!

Intendation is not 

recognized!

"where" for local definitions

is not supported, hence all 

definitions are global

rule TrackControl = 
par
forall x in Track do
par

SetDeadline(x)
SignalClose(x)
ClearDeadline(x)

endpar
SignalOpen

endpar

rules are introduced

with this keyword

"element of" is

translated to "in"

many rules have

a "do" at the end!

no semicolons at 

the end of lines
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this forall is an expression

and not a rule; that's why we

used "holds" instead of "do"

UpdateRule is ":="

rule SetDeadline(x) =
if trackStatus(x) = coming and deadline(x) = infinity then

deadline(x) := now + waitTime

rule SignalClose(x) =
if now >= deadline(x) and now <= deadline(x) + span then

dir := close

rule ClearDeadline(x) = 
if trackStatus(x) = empty and deadline(x) < infinity then

deadline(x) := infinity

rule SignalOpen = 
if dir = close and safeToOpen then

dir := open

derived safeToOpen = 
forall t in Track holds

trackStatus(t) = empty or (now + dopen) < deadline(t)

defined in 

MathPlugin

logical operators are

"and", "or", "not"

defined in 

TimePlugin

comparison is "="

"safeToOpen" is a derived

function, not a rule
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rule GateControl =  
par
if dir = open and gateState = closed then gateState := opened
if dir = close and gateState = opened then gateState := closed

endpar

The rule "Switch" is not 

predefined in CoreASM. 

Thus, we simulate its behaviour. 

The conditional rule is "if … then … else …". 

If you skip the "else"-part, it is treated as if you

write "… else skip".
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Important part: Initialization

• You cannot run the specification, yet, because you have not 
defined an init rule:

init InitRule

rule InitRule = par
TrackControl
GateControl

endpar

With the "init"-keyword you

specify one "start"-rule that is

executed at each step

You can write the "par"-keyword

also at the end of a line
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Run the specification

Error message:

Cannot perform a 'forall' over undef. Forall domain must be an 
enumerable element. (check C:\...\RailroadCrossing.coreasm:100,15)

in TrackControl()
called from InitRule()
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Change the "Run configuration"
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Change the "Run configuration"

#--- end of step 1



page 23

A closer look at the error message

Cannot perform a 'forall' over undef. Forall domain must be an 
enumerable element. (check C:\...\RailroadCrossing.coreasm:100,15)

in TrackControl()
called from InitRule()

• So far, no types or controlled function definitions at all

• every identifier used in the specification is initialized with "undef"

• possible types in CoreASM (with plugins)

• boolean

• universe (a special built-in kind of set)

• enumeration

• number

• string

• collections (set, bag, list, queue, stack, map)



page 24

Remove "undef"s by defining/initializing all identifiers

universe Track = {track1, track2}

enum TrackStatus = {empty, coming, crossing}
enum GateState = {opened, closed}
enum Direction = {open, close}

rule InitRule = par
// initialize all constants
dmin := 5000
dmax := 10000
dopen := 2000
dclose := 2000
waitTime := 3000
dcrossing := 3000
span := 500
gateState := opened
startTime := now

// initialize the track sensors
forall t in Track do
par
trackStatus(t) := empty
deadline(t) := infinity
passingTime(t) := 0

endpar
TrackControl
GateControl

endpar // of the InitRule

definition of universes as sets

enumerations do not define sets, 

but possible values of a location

line comments with "//"

block comments with "/*.. */"
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Still errors due to parallelism

• Initialization is performed in parallel  update with initial state not 
yet available when "TrackControl" or "GateControl" are executed.

• Typical pattern to ensure initialization executed only once and at 
the beginning:

universe Agents = {trackController, gateController}
universe Track = {track1, track2}

rule InitRule = par
// initialize all constants
…
// initialize the track sensors
…
program(trackController) := @TrackControl
program(gateController) := @GateControl
program(self) := undef

endpar

predefined set of agents (+ init-rule)

assignment of programs (= rules) to

agents. program is a predefined

function on the set of Agents.

@<rulename> refers to the rule

itself (not only the name)

The program of the initialization-agent is removed

(set to undef). "self" is a predefined keyword to

specify the currently executing agent
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Running, but… how to stop?

about box

very simple (and

outdated help)

resume (after 

pausing)

stop engine

pause engine
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• … no output is produced, except (if you made the changes in the 
run configuration):
#--- end of step 1
#--- end of step 2
#--- end of step 3
…

• Solution: provide an observer

rule ObserverProgram =
seqblock
print "Time: " + ((now - startTime) / 1000) + " seconds"
forall t in Track do

print "Track " + t + " is " + trackStatus(t)
print "Gate is " + gateState
print ""

endseqblock

The TurboASM rule "seqblock" 

executes the rules inside sequentially.

Running, but… 

"print" uses Java "toString"-method to

generate string for arbitrary types for

console output, followed by a newline

Don't forget to add "observer" to the

set of Agents and to assign this rule

as program for this agent!
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• … always the same output is produced

• Solution: provide an environment simulating the movement of a 
train:

rule EnvironmentProgram = 
choose t in Track do par
if trackStatus(t) = empty then
if random < 0.001 then par
trackStatus(t) := coming
passingTime(t) := now + dmin

endpar
if trackStatus(t) = coming then
if passingTime(t) < now then par
trackStatus(t) := crossing
passingTime(t) := now + dcrossing

endpar
if trackStatus(t) = crossing then
if passingTime(t) < now then
trackStatus(t) := empty

endpar

"choose" chooses an arbitrary

element of the given set

Running, but… 

"random" provides a 

number x with 0 <= x < 1

Again, don't forget to add "environment" 

to the set of Agents and to assign this

rule as program for this agent!
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option Signature.NoUndefinedId strict

function gateState: -> GateState initially opened
function trackStatus: Track -> TrackStatus
function deadline: Track -> NUMBER
function dir : -> Direction initially open
function passingTime: Track -> NUMBER
function startTime: -> NUMBER

derived dmin = 5000
derived dmax = 10000
derived dopen = 2000
derived dclose = 2000
derived waitTime = dmin - dclose
derived dcrossing = 3000
derived span = 500

don't allow undefined identifiers

Best practices

define function types

Define constants as derived functions

define initial values (where

possible) at the declaration
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From mathematical notation to executable specification

Roundup:

– Initialization

– definition of agents, disabling of init agent

– type definitions optional

– output with “print”

– modeling of environment

Some more features making the development easier:

– syntax highlighting

– code completion

– quick fixes

– debugging

– update set comparison
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Further documentation

• Please read the User manual to get familiar with the language:
https://github.com/CoreASM/coreasm.core/raw/master/org.corea
sm.engine/rsc/doc/user_manual/CoreASM-UserManual.pdf

• Please read the Debugging manual to get familiar with the
debugging possibilities:
https://github.com/CoreASM/coreasm.core/raw/master/org.corea
sm.eclipse/rsc/doc/CoreASM_Eclipse_Debugger_Manual.pdf

• Please read the Design documentation, if you want to know
details about how CoreASM works or if you want to contribute to
this project:
https://github.com/CoreASM/coreasm.core/raw/master/org.corea
sm.engine/rsc/doc/CoreASM-DesignDocumentation.pdf

https://github.com/CoreASM/coreasm.core/raw/master/org.coreasm.engine/rsc/doc/user_manual/CoreASM-UserManual.pdf
https://github.com/CoreASM/coreasm.core/raw/master/org.coreasm.eclipse/rsc/doc/CoreASM_Eclipse_Debugger_Manual.pdf
https://github.com/CoreASM/coreasm.core/raw/master/org.coreasm.engine/rsc/doc/CoreASM-DesignDocumentation.pdf
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Where to get it

eclipse marketplace (http://marketplace.eclipse.org/search/site/coreasm)

eclipse update site
(http://webcoreasm.informatik.uni-ulm.de/coreasm-repository/)

Sources on github
(https://github.com/coreasm)

If you have any question, don't hesitate to contact us via coreasm@uni-ulm.de

Michael Stegmaier Alexander Raschke

http://marketplace.eclipse.org/search/site/coreasm
http://webcoreasm.informatik.uni-ulm.de/coreasm-repository/
https://github.com/coreasm
mailto:coreasm@uni-ulm.de
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Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that
• the two original authors are mentioned
• modified slides are made available under the same licence
• the (re-) use is not commercial

https://creativecommons.org/licenses/by-nc-sa/4.0/

