
Alexander Raschke (Ulm), Egon Börger (Pisa)

Short Introduction to CoreASM

page 2

General Information

• Developed by Farahbod Roozbeh et al. from 2005 to 2010 as

PhD-thesis at Simon Fraser University, Vancouver, Canada.

• Open-source tool (Java 1.7)

• Source code (and documentation) available at

https://github.com/coreasm

• General Idea:

• minimal core and everything else is implemented as a

plugin (even ConditionalRule (if-then-else) is a plugin!)

• Easy to extend and very flexible possibilities

• Set of plugins already shipped with installation

(see user manual at https://github.com/CoreASM/

coreasm.core/raw/master/org.coreasm.engine/rsc/doc/

user_manual/CoreASM-UserManual.pdf)

https://github.com/coreasm
https://github.com/CoreASM/coreasm.core/raw/master/org.coreasm.engine/rsc/doc/user_manual/CoreASM-UserManual.pdf

page 3

CoreASM overview

CoreASM

CoreASM engine

- Parser, Interpreter, Abstract Storage, Schedulers

- Basic plugins: Block, Conditional, Forall, …

- Standard plugins: TurboASM, Signature (types), …

- Additional plugins: Time, Scheduling, Math, …

Carma

command line interface

eclipse plugin(s)

- project integration

- editor

- debugger

page 4

Installation

• Easiest way to get CoreASM is via eclipse marketplace:

https://marketplace.eclipse.org/content/coreasm-eclipse-

plugin

https://marketplace.eclipse.org/content/coreasm-eclipse-plugin

page 5

Getting started

• First, you have to create a new (general) project in eclipse

page 6

Getting started

• In this new project container, you can create

a CoreASM specification

page 7

First example: Railroad crossing

comingcrossing

dmin < x < dmax

emptyTrackStatus:

dclose

dopen

waittime = dmin - dclose

deadline

page 8

First example: Railroad crossing

emptyTrackStatus:

deadline

coming

page 9

First example: Railroad crossing

TrackStatus:

deadline

coming

page 10

First example: Railroad crossing

TrackStatus:

deadline

comingcrossing

page 11

First example: Railroad crossing

TrackStatus:

deadline

crossing empty

page 12

First example: Railroad crossing

TrackStatus:

deadline

empty

page 13

From Mathematical Notation to Executable Specifications

E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System Design and Analysis. Springer, 2003

page 14

From Mathematical Notation to Executable Specifications

E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System Design and Analysis. Springer, 2003

page 15

First example in CoreASM

CoreASM RailRoadCrossing

use StandardPlugins
use TimePlugin
use MathPlugin

Every specification must

start with this keyword

This name is arbitrary;

it is recommended to

choose a useful name

StandardPlugins is a collection of

several plugins; it is recommended

to use it in every specification

TimePlugin provides a monitored function

"now" representing the current system

time (incremented after every step)

MathPlugin is used to

calculate with NUMBERs

page 16

don't miss the

"par"/"endpar" keywords!

Intendation is not

recognized!

"where" for local definitions

is not supported, hence all

definitions are global

rule TrackControl =
par
forall x in Track do
par

SetDeadline(x)
SignalClose(x)
ClearDeadline(x)

endpar
SignalOpen

endpar

rules are introduced

with this keyword

"element of" is

translated to "in"

many rules have

a "do" at the end!

no semicolons at

the end of lines

page 17

this forall is an expression

and not a rule; that's why we

used "holds" instead of "do"

UpdateRule is ":="

rule SetDeadline(x) =
if trackStatus(x) = coming and deadline(x) = infinity then

deadline(x) := now + waitTime

rule SignalClose(x) =
if now >= deadline(x) and now <= deadline(x) + span then

dir := close

rule ClearDeadline(x) =
if trackStatus(x) = empty and deadline(x) < infinity then

deadline(x) := infinity

rule SignalOpen =
if dir = close and safeToOpen then

dir := open

derived safeToOpen =
forall t in Track holds

trackStatus(t) = empty or (now + dopen) < deadline(t)

defined in

MathPlugin

logical operators are

"and", "or", "not"

defined in

TimePlugin

comparison is "="

"safeToOpen" is a derived

function, not a rule

page 18

rule GateControl =
par
if dir = open and gateState = closed then gateState := opened
if dir = close and gateState = opened then gateState := closed

endpar

The rule "Switch" is not

predefined in CoreASM.

Thus, we simulate its behaviour.

The conditional rule is "if … then … else …".

If you skip the "else"-part, it is treated as if you

write "… else skip".

page 19

Important part: Initialization

• You cannot run the specification, yet, because you have not
defined an init rule:

init InitRule

rule InitRule = par
TrackControl
GateControl

endpar

With the "init"-keyword you

specify one "start"-rule that is

executed at each step

You can write the "par"-keyword

also at the end of a line

page 20

Run the specification

Error message:

Cannot perform a 'forall' over undef. Forall domain must be an
enumerable element. (check C:\...\RailroadCrossing.coreasm:100,15)

in TrackControl()
called from InitRule()

page 21

Change the "Run configuration"

page 22

Change the "Run configuration"

#--- end of step 1

page 23

A closer look at the error message

Cannot perform a 'forall' over undef. Forall domain must be an
enumerable element. (check C:\...\RailroadCrossing.coreasm:100,15)

in TrackControl()
called from InitRule()

• So far, no types or controlled function definitions at all

• every identifier used in the specification is initialized with "undef"

• possible types in CoreASM (with plugins)

• boolean

• universe (a special built-in kind of set)

• enumeration

• number

• string

• collections (set, bag, list, queue, stack, map)

page 24

Remove "undef"s by defining/initializing all identifiers

universe Track = {track1, track2}

enum TrackStatus = {empty, coming, crossing}
enum GateState = {opened, closed}
enum Direction = {open, close}

rule InitRule = par
// initialize all constants
dmin := 5000
dmax := 10000
dopen := 2000
dclose := 2000
waitTime := 3000
dcrossing := 3000
span := 500
gateState := opened
startTime := now

// initialize the track sensors
forall t in Track do
par
trackStatus(t) := empty
deadline(t) := infinity
passingTime(t) := 0

endpar
TrackControl
GateControl

endpar // of the InitRule

definition of universes as sets

enumerations do not define sets,

but possible values of a location

line comments with "//"

block comments with "/*.. */"

page 25

Still errors due to parallelism

• Initialization is performed in parallel  update with initial state not
yet available when "TrackControl" or "GateControl" are executed.

• Typical pattern to ensure initialization executed only once and at
the beginning:

universe Agents = {trackController, gateController}
universe Track = {track1, track2}

rule InitRule = par
// initialize all constants
…
// initialize the track sensors
…
program(trackController) := @TrackControl
program(gateController) := @GateControl
program(self) := undef

endpar

predefined set of agents (+ init-rule)

assignment of programs (= rules) to

agents. program is a predefined

function on the set of Agents.

@<rulename> refers to the rule

itself (not only the name)

The program of the initialization-agent is removed

(set to undef). "self" is a predefined keyword to

specify the currently executing agent

page 26

Running, but… how to stop?

about box

very simple (and

outdated help)

resume (after

pausing)

stop engine

pause engine

page 27

• … no output is produced, except (if you made the changes in the
run configuration):
#--- end of step 1
#--- end of step 2
#--- end of step 3
…

• Solution: provide an observer

rule ObserverProgram =
seqblock
print "Time: " + ((now - startTime) / 1000) + " seconds"
forall t in Track do

print "Track " + t + " is " + trackStatus(t)
print "Gate is " + gateState
print ""

endseqblock

The TurboASM rule "seqblock"

executes the rules inside sequentially.

Running, but…

"print" uses Java "toString"-method to

generate string for arbitrary types for

console output, followed by a newline

Don't forget to add "observer" to the

set of Agents and to assign this rule

as program for this agent!

page 28

• … always the same output is produced

• Solution: provide an environment simulating the movement of a
train:

rule EnvironmentProgram =
choose t in Track do par
if trackStatus(t) = empty then
if random < 0.001 then par
trackStatus(t) := coming
passingTime(t) := now + dmin

endpar
if trackStatus(t) = coming then
if passingTime(t) < now then par
trackStatus(t) := crossing
passingTime(t) := now + dcrossing

endpar
if trackStatus(t) = crossing then
if passingTime(t) < now then
trackStatus(t) := empty

endpar

"choose" chooses an arbitrary

element of the given set

Running, but…

"random" provides a

number x with 0 <= x < 1

Again, don't forget to add "environment"

to the set of Agents and to assign this

rule as program for this agent!

page 29

option Signature.NoUndefinedId strict

function gateState: -> GateState initially opened
function trackStatus: Track -> TrackStatus
function deadline: Track -> NUMBER
function dir : -> Direction initially open
function passingTime: Track -> NUMBER
function startTime: -> NUMBER

derived dmin = 5000
derived dmax = 10000
derived dopen = 2000
derived dclose = 2000
derived waitTime = dmin - dclose
derived dcrossing = 3000
derived span = 500

don't allow undefined identifiers

Best practices

define function types

Define constants as derived functions

define initial values (where

possible) at the declaration

page 30

From mathematical notation to executable specification

Roundup:

– Initialization

– definition of agents, disabling of init agent

– type definitions optional

– output with “print”

– modeling of environment

Some more features making the development easier:

– syntax highlighting

– code completion

– quick fixes

– debugging

– update set comparison

page 31

Further documentation

• Please read the User manual to get familiar with the language:
https://github.com/CoreASM/coreasm.core/raw/master/org.corea
sm.engine/rsc/doc/user_manual/CoreASM-UserManual.pdf

• Please read the Debugging manual to get familiar with the
debugging possibilities:
https://github.com/CoreASM/coreasm.core/raw/master/org.corea
sm.eclipse/rsc/doc/CoreASM_Eclipse_Debugger_Manual.pdf

• Please read the Design documentation, if you want to know
details about how CoreASM works or if you want to contribute to
this project:
https://github.com/CoreASM/coreasm.core/raw/master/org.corea
sm.engine/rsc/doc/CoreASM-DesignDocumentation.pdf

https://github.com/CoreASM/coreasm.core/raw/master/org.coreasm.engine/rsc/doc/user_manual/CoreASM-UserManual.pdf
https://github.com/CoreASM/coreasm.core/raw/master/org.coreasm.eclipse/rsc/doc/CoreASM_Eclipse_Debugger_Manual.pdf
https://github.com/CoreASM/coreasm.core/raw/master/org.coreasm.engine/rsc/doc/CoreASM-DesignDocumentation.pdf

page 32

Where to get it

eclipse marketplace (http://marketplace.eclipse.org/search/site/coreasm)

eclipse update site
(http://webcoreasm.informatik.uni-ulm.de/coreasm-repository/)

Sources on github
(https://github.com/coreasm)

If you have any question, don't hesitate to contact us via coreasm@uni-ulm.de

Michael Stegmaier Alexander Raschke

http://marketplace.eclipse.org/search/site/coreasm
http://webcoreasm.informatik.uni-ulm.de/coreasm-repository/
https://github.com/coreasm
mailto:coreasm@uni-ulm.de

page 33

Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that
• the two original authors are mentioned
• modified slides are made available under the same licence
• the (re-) use is not commercial

https://creativecommons.org/licenses/by-nc-sa/4.0/

