
Egon Börger (Pisa) & Alexander Raschke (Ulm)

Communicating Business Processes

The Subject-Oriented BP Communication Model

A Modeling-For-Change Case Study

Università di Pisa, Dipartimento di Informatica, boerger@di.unipi.it
Universität Ulm, Abteilung Informatik, alexander.raschke@uni-ulm.de

See Ch. 5.2 of Modeling Companion1

http://modelingbook.informatik.uni-ulm.de

1 Except where stated otherwise, the figures are copied from the book and c© 2018 Springer-Verlag Germany, reprinted with permission.

Copyright CC BY–NC-SA 4.0 1



Theme: Modeling-For-Change with Abstract State Machines

We replay specifying an industrial workflow engine, developed for the
execution of Business Process Models (BPMs), whose requirements
were presented piecemeal, during the modeling effort.

– Each time additional requirements were introduced, they were
captured by an ASM refinement of the previously developed model.

The involved ASMs are instances of a pattern which occurs frequently
in the field of Business Processes (BPs), namely

– control state ASMs whose transitions may have an iterative structure
that is guided by a task-completion concept, coming with entry and
exit conditions and actions.

Therefore, in this lecture we

first define this class of ASM Net Diagrams, tailored for modeling BPs,

then use them to stepwise develop the S-BPM communication model
which is characteristic for the Subject-Oriented Business Process
Modeling approach.

Copyright CC BY–NC-SA 4.0 2



Goal of ASM nets: tailor ASMs for the domain of BPs

by defining a BP-specific class of ASM Nets based upon which

BP experts can express a BP design

– using directly BP-knowledge-based terms/notations which are
supported by ASM constructs expressing their intuitive understanding

• correctly: controllable by BP experts via inspection/validation

• precisely: for the sw expert as spec for the implementation

– combining control, data, communication and resource aspects

system designers can implement the experts’ BP design

– using behavior preserving ASM refinements to executable code

• documented (for explanation) and justified (for correctness)

such that the BP developer can work with the underlying intuitive
understanding of the graphical constructs, supported by a
mathematically precise, easy to check definition (‘formalization’) of the
behavioral interpretation of the graphical notations

Copyright CC BY–NC-SA 4.0 3



Technical Idea: Build Iteration into Control State ASMs

Control state ASM have all their rules of the form:2

n

cond 1

cond nrule

1rule

i

j

jn

1

Enrich control-state ASMs by an iterated execution view of
components rulek that occurs frequently with BPMs and is guided by

– a (‘milestone’) completion concept

– entry (‘guard’) and exit (‘termination’) conditions/actions

2 Figure copied from the AsmBook, c© 2003 Springer-Verlag Berlin Heidelberg, reprinted with permission

Copyright CC BY–NC-SA 4.0 4



Defining ASM net diagrams

An ASM net is a directed graph built from ASM net transitions

ik EntryCondk M ExitCondl jl

. . .

. . .

. . .

. . .

connecting exitnodes jl with at most one entry node ik . Behavior:

execution of (an instance of) body M begins with executing Start
and passing control to M if mode = ik for some entry node ik and
EntryCondk is satisfied.

M is executed as long as the body is active and not yet Completed

Finalize is executed when M ’s execution is Completed , letting the
net computation proceed to mode = jl for the exit node jl whose
ExitCondl is satisfied.

Copyright CC BY–NC-SA 4.0 5



Flowchart visualizing ASM net rule behavior (let i = ik)

i EntryCondk Start(M ,i)

start(M,i)Completed(M,i)M

Finalize(M ,i)

ExitCond1 ExitCondm. . .

j1 jm

yes

no

Often used with one entry (true guard), two exits (+,-)

Copyright CC BY–NC-SA 4.0 6



Textual definition of AsmRule(transition, i)

let i = ik
if mode = i and EntryCondk then -- enter M

Start(M , i)

mode := start(M , i) -- make M active

if active(M , i) then

if not Completed(M , i) then M -- iterate M

else

Finalize(M , i)

Exit

where

Exit = forall j ∈ {j1, . . . , jm} if ExitCondj then mode := j

active(M , i) iff modeM ,i ∈ Mode(M , i)

Mode(M , i) = set of modeM ,i values of Mi (instance of M )

Copyright CC BY–NC-SA 4.0 7



Synchronous/Asynchronous net interpretation

Sync: same mode location used in all net transitions and bodies

SyncAsmNet(N ) =

forall transition ∈ N AsmRulesync(transition)

where

AsmRulesync(transition) =

forall i ∈ {i1, . . . , in} AsmRule(transition, i)

Concur: each transition has its own mode location.
ConcurAsmNet(N ): a family of

agents atransition with program AsmRulesync(transition) or

agents a(transition,i) with program AsmRule(transition, i)

Copyright CC BY–NC-SA 4.0 8



ASM nets rigorously capture UML activity dgms

UML event driven activity diagram scheme:

– If a certain event or state configuration (situation) occurs, perform
an action and proceed along the indicated control flow

control-state ASMs provide a general, mathematically rigorous,
abstract meaning of:

– situation = configuration of whatever items/signals/data/resources
(ASM state), expressed by rule guarding cond itions

– action = change of the configuration (value) of some items (state
transition/update), expressed by ASM transition rules

– proceed = update ctl state (change mode)

NB. Each (synchronous) UML activity diagram can be built from
alternating branching and action nodes of ASM net transitions, for
each agent

See the ASM-based platform built at U of Ulm for design and exec of
rigorous UML diagrams (Saarstedt, Guttmann, Raschke et al.)

Copyright CC BY–NC-SA 4.0 9



Industrial Case Study: S-BPM communication model

Goal: develop an ASM net to specify an interpreter for S-PBM which
directly and faithfully reflects how the S-BPM engine executes:

process agents (called subjects) which

perform 2 kinds of actions on arbitrary objects (data type operations)

– internal process actions (in the agent’s local state)

– external process actions: communication with other agents

• thus the processes can be modeled as communicating ASMs

walking through the nodes of an associated Subject Behavior Diagram
SBD with associated actions service(node).

Copyright CC BY–NC-SA 4.0 10



Each Subject Behavior Diagram modeled as ASM net

The S-BPM semantics of SBDs is characterized by the following action
execution requirement:

once an agent entered an SBD-node (read: the current process stage),

it enters the next SBD-node (to execute the associated next action)
only upon completion of the action associated with the current stage,

Thus, an SBD can be modeled directly as an ASM net:

with exactly one initial node

possibly multiple end nodes such that

– each path starting at the initial node leads to at least one end node

each net transition has one entry and possibly multiple exit nodes

The behavioral interpretation is SyncAsmNet(SBD) because

each SBD describes one sequential process, executed by one subject

Copyright CC BY–NC-SA 4.0 11



Distributed S-BPM processes modeled as concurrent ASM

Let P = (subjk , SBDk )1≤k≤l be a distributed S-BPM process.

Each participating subprocess (subjk , SBDk ) is a sequential process,
modeled as SyncAsmNet(SBDk ).

P is a concurrent ASM, in fact a family of communicating ASMs,
modeled as AsyncAsmNet(P).

To describe single SBDs, we will use mainly ASM net transitions with
one entry and two exits:

Mentry

+

‐

Copyright CC BY–NC-SA 4.0 12



Capture piecemeal presented requs by stepwise refinements

We concentrate on the transitions for nodes with an associated
communication action ComAct , either a Send or Receive action.

The requirements for ComnAct ions have been formulated in three steps:

for communication of single msgs,

for communication of multiple msgs,

for communication alternatives.

At a later stage, an additional requirement was formulated

for arbitrary alternative actions.

To illustrate how ASM models support design for change, we specify
these actions in the indicated order, starting with a ground model and 3
times refining the previous model.

We define the components of the corresponding ASM net transitions.

Copyright CC BY–NC-SA 4.0 13



S-BPM InputPoolSizeReq

The communication bw S-BPM processes is characterized by specific
mailbox requirements. Mailboxes are called input pool.

We first list the requirements for communication of single msgs.

InputPoolSizeReq. The inputPool has the following size restrictions,
based upon an underlying classification of messages into types:

overall capacity maxSize ∈ {0, 1, . . .} (non-negative number),

maximal number maxFrom(sender ) of messages allowed from a
sender or maxFor (type) of a type.

At configuration time the user can indicate for any sender and message
type the desired size limit and the sizeAction to be taken in case of a
size violation.

Copyright CC BY–NC-SA 4.0 14



S-BPM SizeViolationActionReq and SyncReceiveReq

SizeViolationActionReq. If a message m violates a size restriction, one
of the following sizeActions can be taken:

m is dropped (not inserted into the inputPool),

m is blocked (not inserted into the inputPool) but can be tried to be
sent synchronously; maxSize violation (for maxSize <∞) implies
action = Blocking ,

either the oldestMsg or the youngestMsg , determined in terms of its
insertionTime into the nputPool), is deleted from the inputPool
and m is inserted.

SyncReceiveReq. maxFrom(sender ) = 0 and/or maxFor (type) = 0
indicates that the owner of the inputPool accepts messages from the
indicated sender and/or of the indicated type only via a rendezvous
(synchronously). size = 0 implies action = Blocking . Positive size
limits are used for asynchronous communication.

Copyright CC BY–NC-SA 4.0 15



MsgPreparationReq for communication of single messages

MsgPreparationReq. A communication action starts with defining the
curMsg to be handled: for Send this is a concrete message with its data;
for Receive it is the kind of message to look for in the inputPool ,
namely either any message or a message from a particular sender or a
message of a particular type or a message of a particular type from a
particular sender.

This requirement is satisfied by defing the Start component of the
SingleSendNet transition as follows:

Start(SingleSend, entry) = Prepare(curMsg , entry , Send)

Prepare(curMsg , entry , Send) =

curMsg := composeMsg(msgData(entry))

NB. The functions msgData, composeMsg can be varied by different
implementations.

Copyright CC BY–NC-SA 4.0 16



SendActionReq for single messages

SendActionReq. If a Send action CanAccess the inputPool of the
receiver, it inserts its message m asynchronously into the inputPool if
this implies no SizeViolation.

If SizeViolation(m) = true there are three possible cases:

CancelingSend case: m is inserted if the corresponding sizeAction(m)
is to drop the youngest or the oldest message from the inputPool

DropIncoming case: m is simply not inserted

Blocking case: m is not inserted but an attempt is made to
synchronously Send m

The Send action fails if a synchronous Send attempt is made but fails or
if the inputPool could not be accessed.

Copyright CC BY–NC-SA 4.0 17



SingleSend body of SingleSendNet transition

start
no

yesno

Record
Fail

no

Can
Access

Blocked
yes PassMsg

RecordSuccess

Record
Fail

+

‐

yes
Record
Success

Rendez
vous

CanAccess(sender , pool) iff

sender = selectPool ({subject | TryingToAccess(subject , pool)})
Blocked iff SizeViolation(curMsg) = true and

sizeAction(curMsg) = Blocking

Copyright CC BY–NC-SA 4.0 18



SingleSendNet component PassMsg

PassMsg =

let pool = inputPool(receiver (curMsg))

if (not SizeViolation(curMsg)) or

SizeViolation(curMsg) and sizeAction(curMsg) 6=
DropIncoming

then Insert(curMsg , pool)

if sizeAction(curMsg) = DropYoungest then

Delete(youngestMsg(pool), pool)

if sizeAction(curMsg) = DropOldest then

Delete(oldestMsg(pool), pool)

NB. The Send action with sizeAction(curMsg) = DropIncoming in
case of a SizeViolation is considered to complete with success.

For Rendezvous-with-the-receiver predicate see below.

Copyright CC BY–NC-SA 4.0 19



ReceiveActionReq for single messages

To satisfy the MsgPreparationReq we define:

Prepare(curMsg , entry ,Receive) =

curMsg := selectMsgKind (ExpectedMsgKind(entry))

ExpectedMsgKind(entry) ⊆ {(s , t , r ) | s ∈ Sender ∪ {any} and

t ∈ MsgType ∪ {any} and r ∈ {sync, async}}

ReceiveActionReq. A Receive action can be of synchronous or
asynchronous kind, specified as part of the kind of expected message
described in the MsgPreparationRequirement.

An asynchronous Receive succeeds if the inputPool contains a
message of the kind of expected message.

A synchronous Receive succeeds if there is a sender which tries to
synchronously Send a message of the kind of expected message.

Otherwise the Receive action fails.

Copyright CC BY–NC-SA 4.0 20



SingleReceive body of SingleReceiveNet

no

start

RecordFail

Record
Locally

yes

Accept

yes

no

Async
(Receive)

Present
(curMsg)

+

‐

Rendez
vous

Sync
(Receive)

Async(Receive) iff third(curMsg) = async

Sync(Receive) iff third(curMsg) = sync

Present(curMsg) iff

forsome msg ∈ inputPool Match(msg , curMsg)

Copyright CC BY–NC-SA 4.0 21



SingleReceive components

Accept =

let receivedMsg =

selectPool ({msg ∈ inputPool | Match(msg , curMsg)})
StoreLocally(receivedMsg)

RecordSuccess(SingleReceive, async)

Delete(receivedMsg , inputPool)

let sender = ιs({s ∈ Sender | CanAccess(s , inputPool(receiver )}
Rendezvous iff

Blocked(sender ) and Sync(Receive)(receiver ) and

Match(curMsg(sender ), curMsg(receiver ))

RecordLocally =

StoreLocally(curMsg(sender ))

RecordSuccess(SingleReceive, sync)

Copyright CC BY–NC-SA 4.0 22



1st refinement: communication of multiple messages

Additional Requirement MultiComActReq: In one ComAct ion, a subject
can handle a finite set MsgToBeHandled of messages.

The mult itude is defined at the SBD-node where such a
MultiComAct ion takes place.

The entire set of MsgToBeHandled has to be prepared before the
SingleComAct ion is performed for each of those messages.

Start(MultiComAct, entry) = PrepareMsg(entry ,ComAct)

PrepareMsg(entry , Send) = forall 1 ≤ i ≤ mult(entry)

let mi = composeMsg(msgData(entry , i))

MsgToBeHandled := {m1, . . . ,mmult(entry)}
RoundMsg := {m1, . . . ,mmult(entry)}

PrepareMsg(entry ,Receive) = forall 1 ≤ i ≤ mult(entry)

let mi = selectMsgKind (ExpectedMsgKind(entry), i)

MsgToBeHandled := {m1, . . . ,mmult(entry)}
Copyright CC BY–NC-SA 4.0 23



MultiComActReq (Cont’d) and MultiComAct body

To complete a MultiComAct ion the subject must Send/Receive the
indicated mult itude of messages without pursuing in between any
other communication.

If for at least one m ∈ MsgToBeHandled the SingleComAct fails,
then the MultiComAct ion fails.

The MultiComAct body iterates SingleComAct ions:

start

SINGLE ComAct

no

Finished
MultiRound FINALIZE

SELECT
NXTMSG

+

‐

yes
‐

+

Copyright CC BY–NC-SA 4.0 24



Iteration component of MultiComAct

FinishedMultiRound iff MsgToBeHandled = ∅
SelectNxtMsg = -- scheduling kept abstract

choose m ∈ MsgToBeHandled

curMsg := m

Delete(m,MsgToBeHandled)

Copyright CC BY–NC-SA 4.0 25



Finalize component of MultiComAct

if Success(MultiRound ,ComAct ,RoundMsg) then

CompleteNormally(ComAct)

PlusExitCond := true

if Fail(MultiRound ,ComAct ,RoundMsg) then

HandleMultiRoundFail(ComAct)

MinusExitCond := true

where

Success(MultiRound ,ComAct ,X ) iff

forall m ∈ X m ∈ SuccessRecord(SingleComAct)

Copyright CC BY–NC-SA 4.0 26



2nd refinement: communication alternatives

The additional AltComActReq reads as follows:

To perform an ComAct ∈ {Send ,Receive} a subject can choose the
set of MsgToBeHandled among finitely many Alternatives.

Alternative is determined by a function alternative(entry ,ComAct).

If the ComAct succeeds for at least one alternative , the AltComAct
succeeds and can be Completed normally.

If the AltComAct fails the subject chooses the next alternative until:

– either one of them succeeds or

– all Alternatives have been tried out and failed. In this case the
AltComAct fails.

Copyright CC BY–NC-SA 4.0 27



ASM refinement to capture communication alternatives

To capture the new requirement, it suffices to put an iterator shell
around MultiComActNet

trying out each element of Alternative as current altternative to be
executed by the MultiComActNet

Use ambient ASMs for passing the chosen alternative to Start

declare composeMsg and selectMsgKind to be ambient dependent
functions

Thereby the set of MsgToBeHandled (together with its copy
RoundMsg) defined by PrepareMsg become parameterized by alt .

Copyright CC BY–NC-SA 4.0 28



Alt(ComAct) body of AltNet(ComAct)

start

amb alt in 
MULTICOMACT

NET

no

Finished
TryAlt

FINALIZE

SELECT
NXTALT

‐

yes

‐

+
+

Start(Alt(ComAct), entry) = Initialize(Alternative,ComAct)

Initialize(Alternative,ComAct) =

Alternative := alternative(entry ,ComAct)

FinishedTryAlt iff Alternative = ∅

Copyright CC BY–NC-SA 4.0 29



Alt(ComAct) components

SelectNxtAlt =

choose a ∈ Alternative

alt := a

Delete(a,Alternative)

Finalize =

if Success(Alt,ComAct) then

CompleteNormally(Alt(ComAct))

PlusExitCond := true

if Fail(Alt,ComAct) then

HandleFail(Alt(ComAct))

MinusExitCond := true

Success(Alt,ComAct) iff forsome a ∈ Alternative

Success(MultiRound ,ComAct ,RoundMsg(a))

Copyright CC BY–NC-SA 4.0 30



3d refinement: order independent work on multiple actions

AltActSubdiagramReq. In an altSplit node SBD splits into finitely many
SBDs Di ∈ AltBehDgm(altSplit) with an arrow from altSplit to the
unique altEntry(Di) (for each 1 ≤ i ≤ n) and an arrow from its unique
altExit(Di) to an altJoin node in the SBD.

service
(altEntry1)

service
(altEntryn)

…… …

…

…

alt
Entry1

alt
Entryn

alt
Exit1

alt
Exitn

altJoin(altSplit)

altSplit

Copyright CC BY–NC-SA 4.0 31



Requirement on compulsory actions

CompulsoryDgmReq. Some subdiagram entries resp. exits are declared
to be Compulsory and determine the completion predicate of the
AltAction as follows:

A Compulsory altEntry(Di) node must be entered during the run so
that the Di -subcomputation must have been started before the
AltAction can be Completed .

A Compulsory altExit(Dj ) node must be reached in the run, for the
AltAction to be Completed , if during the run the Dj -subcomputation
has been entered at altEntry(Dj ) (whether the altEntry(Dj ) state is
Compulsory or not).

At least one subdiagram has Compulsory altEntry and altExit .

Copyright CC BY–NC-SA 4.0 32



Requirements for alternative action nodes

AltActionReq. To perform the AltAction associated with an altSplit
node means to complete some of the subdiagram computations, step by
step in an interleaved (order-independent) way.

CompletionReq. The AltAction associated with node altSplit is
Completed if all subdiagrams Di with Compulsory altEntry(Di) have
been entered and all computations of subdiagrams Dj with Compulsory
altExit(Dj ) have been Completed .

Copyright CC BY–NC-SA 4.0 33



AltAction body

reuse of ASM net model SyncAsmNet:

mode location is implicitly parameterized by the SBD where it guides
the control

so that step control in Di is in terms of modeDi
.

Start(AltAction, altSplit) =

forall D ∈ AltBehDgm(altSplit)

if Compulsory(D) then modeD := initial(D)

AltAction =

choose D ∈ altBehDgm

if Active(D) then SyncAsmNet(D)

else modeD := initial(D) -- Start a subdiagram computation

Copyright CC BY–NC-SA 4.0 34



Components of AltAction

Active(D) iff modeD 6= undef --D has been started

Completed(AltAction, altSplit) iff

forall D ∈ AltBehDgm(altSplit)

if Compulsory(altEntry(D)) then Active(D)

and if Compulsory(altExit(D)) then modeD = altExit(D)

Finalize(AltAction) =

forall D ∈ AltBehDgm(altSplit) modeD := undef

mode := altJoin(altSplit)

Copyright CC BY–NC-SA 4.0 35



Remark on a BP certification procedure

build correct models for meaning of (graphical) BP notations

– define meaning in precise application domain terms

– define ASM net ground models (end-user-oriented
domain-knowledge-expressing interfaces) for the meaning

– validate ground models to ‘correctly’ represent intended meaning

provide guaranteed correct BP ground model

– design BP using the defined (graphical) notations

– inspect/validate BP design to correctly reflect intentions

provide guaranteed correct ground model implementation

– use resulting ground model ASM net as precise and complete spec
for sw implementation of the BP

– verify the coding to be correct

Result: implementation is guaranteed (and can be certified) to correctly
reflect the meaning the BP expert intended by high-level BPM.

Copyright CC BY–NC-SA 4.0 36



Degrees of certificate quality

Quality (degree of reliability) of a correctness certificate for a BP is
proportional to the quality of:

the ground model validation, e.g. by model inspection, model checking,
model-based testing

verification of the stepwise refinements used to develop/generate code
for an executable version of the BP spec, e.g. by

– compiling ground model ASM net using a verified compiler

– providing proof sketches or standard mathematical or machine
supported (interactive or fully automated) proofs of (some critical or
all) code generating refinement steps

ASM Net approach to BP development offers all the ingredients which
allow one to produce certifiably correct industrial BPs

NB. This is a BP-specific version of Hoare’s ‘verified software grand
challenge’.

Copyright CC BY–NC-SA 4.0 37



References

E. Börger and A. Raschke: Modeling Companion for Software
Practitioners. Springer 2018
http://modelingbook.informatik.uni-ulm.de

E. Börger and A. Fleischmann: Abstract State Machine Nets. Closing
the Gap between Business Process Models and their Implementation.

– Proc. S-BPM ONE 2015, ACM Digital Library ISBN
978-1-4503-3312-2

A. Fleischmann, W. Schmidt, C. Stary, S. Obermeier, E. Börger:
Subject-Oriented Business Process Management.

– Springer Open Access Book 2012.

Copyright CC BY–NC-SA 4.0 38

http://modelingbook.informatik.uni-ulm.de


Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the original authors are mentioned

modified slides are made available under the same licence

the (re-) use is not commercial

Copyright CC BY–NC-SA 4.0 39


