
Egon Börger (Pisa) & Alexander Raschke (Ulm)

Communicating ASMs

illustrated by modeling monitoring network runs

Università di Pisa, Dipartimento di Informatica, boerger@di.unipi.it
Universität Ulm, Abteilung Informatik, alexander.raschke@uni-ulm.de

See Ch. 3.3 of Modeling Companion
http://modelingbook.informatik.uni-ulm.de
Copyright CC BY–NC-SA 4.0 1



Goal of the lecture

define communicating ASMs, i.e. multi-agent ASMs without shared
memory whose actions are

– either local actions, affecting only each agent’s local state

– or inter-process communication actions, i.e. sending/receiving
msgs

illustrate their use to model monitoring network runs (i.e. runs of
concurrent ASMs which communicate with their neighbors) for

– concurrent leader election

•GraphLeadElect (Exl.1)

– termination detection of diffusing system runs

•TerminationDetector(D) (Exl.2)

•TerminationDetector(GraphLeadElectDiffuse)

– concurrent (asynchronous) emulation of synchronous process runs

•ConcurSyncEmulator(Process ,Edge) (Exl.3)

Copyright CC BY–NC-SA 4.0 2



Definition of communicating ASMs

A system of communicating ASMs is defined as multi-agent ASM of
components p = (ag(p), pgm(p),mailbox (p)) for p ∈ Process where:

the signatures are pairwise disjoint so that each agent has its own
private state, also called internal state or local state,

each agent is enriched by a mailbox for incoming messages,

each program pgm(p) may contain, besides the usual ASM constructs,
the abstract communication actions Send(message) and
Consume(message) and the Received(message) predicate.

Usually Process is assumed to be finite (unless otherwise stated).

The notion of run is that of concurrent ASM runs. Due to the absence
of shared locations (besides mailbox which p shares with the
communication medium), in such asynchronous runs assume wlog that

each step is an atomic ASM Read&Write step

including independent actions SendTo/ReceiveFrom a mailbox .

Copyright CC BY–NC-SA 4.0 3



Keeping communication actions abstract

We use communication constructs which deliberately abstract from
communication channels. Their intended interpretation is as follows:

Send(m, to q) means to transfer the message (m, from self, to q)
to the communication medium whose job is to deliver it to mailbox (q)

Received(msg) iff msg ∈ mailbox (self)

– i.e. msg has been delivered to its destination by an interaction bw
communication medium and receiver or some delegate, etc.

• leaving to specify when/how to retrieve msgs from the mailbox

Consume(msg) = Delete(msg ,mailbox (self))

mailbox (or inbox , outbox ) treated as set, unless otherwise stated

– e.g. as multiset, FIFO-queue, priority queue, etc.

The components of a msg = (m, from p, to q) are extracted by
functions payload(msg) (msg content), sender (msg), receiver (msg).

Copyright CC BY–NC-SA 4.0 4



Some variations of delivery

Depending on properties of the communication medium:

Immediate reliable communication: every message sent in one ‘step’
(e. g. in a synchronous round) is in the receiver’s mailbox at the
beginning of the next step (e. g. in the next synchronous round).

Reliable communication: every message sent in one ‘step’ eventually
arrives in the receiver’s mailbox.

Eventually reliable communication (asynchronous computation model)
where either no message is lost or where multiple delivery attempts
(message repetition) are performed, assuming that at least one of
them eventually succeeds.

Lossy uncorrupted communication (in the asynchronous model), where
messages can get lost but not corrupted.

Lossy corrupted communication (in the asynchronous computation
model), where messages can get lost or be delivered corrupted.

Copyright CC BY–NC-SA 4.0 5



A notational abbreviation

if Received(msg(params)) then M (msg(params))

abbreviates:

if thereissome msg(params) ∈ mailbox then

choose m ∈ {msg(params) | msg(params) ∈ mailbox} in M (m)

When the order of messages is relevant, we still abstract notationally
from the order-reflecting next function, which retrieves the next message
from the mailbox . In that case

if Received(msg(params)) then M (msg(params))

stands for the following rule:

if m = next(mailbox ) and forsome params m = msg(params)

then M (m)

Copyright CC BY–NC-SA 4.0 6



Disjoint signature assumption

Communicating ASMs (a,M ,mailbox (a)), (b,N ,mailbox (b)) may
have the same program M = N .

– To guarantee disjoint locations (read: local states) we assume all
function symbols f as implicitly parameterized (‘instantiated’) by the
executing agents a, b in the form fa , fb.

• This parameterization to partition states is used in full generality
by what we call ambient ASMs (see Ch.4).

Communicating ASMs may have input or output locations, but those
are used only for providing input or output from/to the environment (if
any) and not for inter-process communication (in case the environment
is not seen as an additional process).

Copyright CC BY–NC-SA 4.0 7



Exl.1: Concurrent Leader Election Requirements

Typical LeaderElectionRequirements:

PlantReq. Consider a network of finitely many linearly ordered Processes
without shared memory, located at the nodes of a directed connected
graph and communicating asynchronously with their neighbors (only).

FunctionalReq. Design and verify a distributed algorithm whose
execution lets every process know the leader.

Corresponding signature elements and constraints:

Finite connected graph (Process ,Edge) (static) with sets Neighb(p)

– set of neighbors q linked to p ∈ Process by (p, q) ∈ Edge

linear order < (static) of Processes (NB. processes used as nodes)

mailbox (p), shared with communication medium, for each
p ∈ Process ; no other shared locations

Send(msg , from p, to q) implies q ∈ Neighb(p)

msg ∈ mailbox (p) implies p ∈ Neighb(sender (msg))

Copyright CC BY–NC-SA 4.0 8



Design idea for LeaderElectionReq

A typical idea to design such an algorithm (see Lynch 1996, Sect.15.2):

StepReq. Every process maintains a record, say cand , of the greatest
process it has seen so far, initially its own. It alternates between:

– sending cand to all its neighbors

– updating cand in case its knowledge has been improved by receiving
a message (say curMsg) with larger value from some neighbor.

Corresponding additional signature elements for each p ∈ Process , all
three controlled by p:

mode ∈ {send , check}
cand ∈ Process

curMsg

Copyright CC BY–NC-SA 4.0 9



A system GraphLeadElect of communicating ASMs

We use process names p ∈ Process as agent name and equip each p
with an instance of the communicating ASM program LeadElect
defined by the following control state ASM which implements the above
design idea:1

GraphLeadElect = (Mp)p∈Process

where Mp = (p,LeadElectp,mailboxp)

1 Figure c© 2003 Springer-Verlag Berlin Heidelberg, reprinted with permission

Copyright CC BY–NC-SA 4.0 10



Components and predicates of LeadElect

Initialization by:

mode = send and cand = self and mailbox = ∅

Propose = forall q ∈ Neighb Send(cand , to q)

ReceiveMsg =

choose msg ∈ mailbox

curMsg := payload(msg) -- NB. msg payload is a process

Consume(msg)

KnowledgeImproved iff curMsg>self

UpdateKnowl = (cand := curMsg) -- ‘increase’ of cand

NB. mode, cand ,mailbox ,Neighb, curMsg are instantiated (read:
implicitly parameterized) by the executing process self.

Copyright CC BY–NC-SA 4.0 11



Termination property of GraphLeadElect

Correctness Lemma. In every properly initialized concurrent
GraphLeadElect run with reliable communication, fair and not
infinitely lazy components—i. e. every enabled process will eventually
make a move and every msg ∈ mailbox will eventually be chosen by
ReceiveMsg—eventually for every p ∈ Process holds:

cand = max (Process) w. r. t. < (everybody ‘knows’ the leader).

mailbox = ∅ (there is no more communication)

mode = check

Proof. Follow in the given run R the propagation of cand = Max

which holds in the initial state S0 of R for Max = max (Process)

via Propose-steps to Neighbors along paths through which any given
p is reachable from Max .

Formally we proceed by induction on the minimal path-length n
connecting Max to p.
Copyright CC BY–NC-SA 4.0 12



GraphLeadElect correctness proof

Decompose R into initial segments InitSegm0 = [S0] and
InitSegmn = [S0, Sn ] (of minimal length for n > 0) such that:

for each n > 0 and each p 6= Max that is reachable from Max by a
path of minimal length n, before reaching Sn process p did:

– have a msg with payload(msg) = Max in its mailbox

– choose a msg with payload Max to ReceiveMssg,
UpdateKnowl by Max and Propose Max to its Neighbors

Lemma. Sn is well-defined for each n and eventually Sn = Sn+1.

Proof. For n = 1 holds p ∈ Neighb(Max ) so that eventually Max will
Propose to p a msg with payload(msg) = Max so that p eventually
chooses msg to ReceiveMssg, to UpdateKnowl by Max and to
Propose Max to its Neighbors. For n > 1, for p (if there is some,
othwise Sn = Sn+1) apply induction hypothesis to a q that is reachable
from Max by a path of minimal length n with p ∈ Neighb(q).

Copyright CC BY–NC-SA 4.0 13



GraphLeadElect correctness proof (Cont’d)

Corollary 1. For all n > 0, Max and every p that is reachable from
Max by a path of length ≤ n:

has cand = Max in state Sn and maintains it in the rest of R

Sends in R no msg neither in nor after state Sn

in or in states after Sn is in mode = check when its mailbox = ∅
Proof 1. Use that since Propose is unguarded, in R every
p ∈ Process always returns eventually to mode = check .

Corollary 2. For some k , the algorithm reaches Sk from where
eventually it reaches a final state S of R in which every p ∈ Process is
in mode = check and has an empty mailbox .

Proof 2. Follows from the finiteness of the graph so that for some
k > 0 every p 6= Max is reachabe from Max by a path of length ≤ k .

Copyright CC BY–NC-SA 4.0 14



On the meaning of ‘let every process know the leader’

Problem with the interpretation of FunctionalRequirement by:

eventually every GraphLeadElect-run terminates in a state
where for every p ∈ Process cand = Max holds.

every p 6= Max can recognize eventually that it is not the leader,
namely when its cand assumes a value cand 6= p

no process knows when the run terminates, so no p (not even Max )
can recognize when its cand has the correct leader value cand = Max

A solution:

we refine GraphLeadElect to a ‘diffusing’ concurrent ASM
GraphLeadElectDiffuse

we define for every diffusing system M TerminationDetector
rules which permit to monitor without any central control every
M-run to recognize when this run terminates

Copyright CC BY–NC-SA 4.0 15



Exl.2: Termination Detector for Diffusing Computations

A diffusing system (Dijkstra/Scholten 1980) is a communicating ASM
for which each of its runs satisfies the following:

the run starts in a state where all system components are quiescent
(read: no step is enabled so that no local action can happen), say in
mode = idle

the run is started by the environment which enables exactly one system
component by sending a message to this component to become the
master of the run—only once until the run terminates (if it terminates
at all)

every other system component can be enabled in the run only by
receiving a message from some system component

the run terminates if it reaches a state in which all components are
again quiescent, say in mode = idle

NB. An ASM M is quiescent in a state if the disjunction of all rule
guards of M is false in this state.

Copyright CC BY–NC-SA 4.0 16



Termination detection idea for diffusing system runs

Let M= (m)m∈Machine be a diffusing communicating ASM.

Idea: Since components are assumed to be enabled only by receiving
some message (assuming reliable msg passing), namely

either a ‘monitor’ msg, say Start , from the environment

– sent by a BeginEndShell(M) env program

or an ‘M-internal’ msg from another component

it suffices to monitor acknowledgements of M-internal msgs:

require for every sent M-internal msg an acknowledgement

check, when a component becomes quiescent, that for every sent
M-internal msg an acknowledgement has been received

Then the master ’s role is to monitor entering and exiting the first of the
resulting spanning trees.

Copyright CC BY–NC-SA 4.0 17



Environment program BeginEndShell(M)

Let M= (m)m∈Machine be a diffusing communicating ASM. We extend
it to a machine TerminationDetector(M) by

adding an env program BeginEndShell(M) to trigger M-runs

extending each pgm(m) to pgm(m)∗ by components

– which react to an env trigger and monitor send/receive actions

Define BeginEndShell(M) as the following control state ASM:

located at a distinguished graph node without incoming edges2

ready

choose m in Machine

Send(Start,m)
initiator := m

wait

Received
(result, from initiator)

Elaborate(result)

2 Figure c© 2018 Springer-Verlag Berlin Heidelberg, reprinted with permission

Copyright CC BY–NC-SA 4.0 18



Master Start/Termination rules

StartDiffuse =

if status(self) = idle and Received(Start , from env ) then

status(self) := master

Start(self) -- assumed to enable self

Consume(Start , from env )

TerminateDiffuse =

if status(self) = master and quiescent(self)

and AllAcksArrived(self) then

status(self) := idle

Send(computationResult , env ) -- payload of termination msg

NB. Initially each component is assumed to be in status = idle, with
empty mailbox and without msgs in the communication medium.

Copyright CC BY–NC-SA 4.0 19



Spanning tree requirements

SpanningTreeBuildReq. When a non-master component becomes
enabled, namely by receiving in status = idle an M-internal (a
non-ack) message, it designates the message sender—a neighbor—as
its parent in a new spanning tree (EnterSpanningTree). Any
further received M-internal message is immediately acknowledged
(also by the master).

ConvergeCastReq. When a non-master component becomes quiescent
and has received an ack for every M-internal message it had sent out,
it will ExitSpanningTree and send an ack to its parent (thus
acknowledging the msg which triggered building this spanning tree).

TerminationReportReq. When the master becomes quiescent and all
the M-internal messages it had sent—some of which enabled other
components—have been acknowledged, then it will report to the
environment that the computation did terminate.

NB. Components may be enabled & disabled multiple times during a run.

Copyright CC BY–NC-SA 4.0 20



Rules to monitor sending M-internal messages

Each m has for each other m ′ a counter msgToBeAckBy(m ′) of the
number of M-internal msgs sent by m to m ′ but not yet acknowledged
by m ′.

msgToBeAckBy(m ′) is increased at each Send(msg , to m ′)
MonitorSentMsg(msg , to receiver ) = -- for M-internal msg
Increase(msgToBeAckBy(receiver ))

msgToBeAckBy(m ′) is decreased when Received(ack , from m ′)
MonitorAckMsg = -- decrease counter of expected acks

if Received(ack , from receiver ) then
Decrease(msgToBeAckBy(receiver ))
Consume(ack , from receiver )

Copyright CC BY–NC-SA 4.0 21



Spanning tree rules to monitor msg acknowledgement

MonitorReceivedMsg(msg , from sender ) = --M-internal msg

if status(self) = idle

then EnterSpanningTree(sender ) -- get enabled

else Send(ack , sender ) -- immediate ack if already woken up

Consume(msg , from sender )

where EnterSpanningTree(sender ) = -- NB. no ack sent

status(self) := treeNode parent(self) := sender

ExitSpanningTree = if status(self) = treeNode and

quiescent(self) and AllAcksArrived(self) then

Send(ack , parent(self)) -- Ack msg which created spanning tree

parent(self) := undef status(self) := idle

where AllAcksArrived(self) iff

forall m ∈ Machine msgToBeAckByself(m) = 0

Copyright CC BY–NC-SA 4.0 22



TerminationDetector(M) for diffusing M= (m)m∈Machine

BeginEndShell(M)
(pgm(m)∗)m∈Machine

where pgm(m)∗ is obtained by adding to pgm(m) the following rules:

StartDiffuse -- just once if triggered by the environment

MonitorSentMsg(msg , to receiver ) -- record expected acks

in parallel to any occurrence of Send(msg , to receiver ) in pgm(m)

MonitorAckMsg -- when ack arrives decrease expected acks

MonitorReceivedMsg(msg , from sender ) -- wake up or do ack

in parallel to each occurrence of Receive(msg , from sender )

or action triggered by Received(msg , from sender ) in pgm(m)

ExitSpanningTree -- only quiescent tree nodes if AllAcksArrived

TerminateDiffuse -- only master if quiescent & AllAcksArrived

Copyright CC BY–NC-SA 4.0 23



TerminationDetector(M) Lemma

In every TerminationDetector(M) run every state satisfies:

For every machine m 6= initiator : status = idle iff parent = undef
and in that case (read: if m is not a node of the spanning tree) m has
not to wait for any message to be acknowledged (formally expressed
msgToBeAckBy(m ′)m = 0 for each m ′ ∈ Machine).

The machines linked by a parent path to the root initiator form a
spanning tree of all machines with status 6= idle.

======================================
The initialization is defined s.t. for every m ∈ Machine:

m quiescent in status(m) = idle with empty mailbox (m)

no sent but not yet received message in the communication medium
and no to-be-acknowledged msg

– i. e. for each m ′ ∈ Machine holds msgToBeAckBy(m ′)m = 0)

no parent defined (parent(m) = undef)

initial mode is ready
Copyright CC BY–NC-SA 4.0 24



Applying TerminationDetector to GraphLeadElect

To make GraphLeadElect diffusing, every p which—by having
received a Start msg (initially from the environment)—is enabled,
namely by updating mode(p) = terminated to mode = send , will also
StartNeighbors and PropagateStart

so that eventually the leader Max enters mode = send .

Therefore Start is treated as GraphLeadElect-internal msg so that
all Neighbors of p MonitorReceivedMsg(Start , from p).

in StartDiffuse refine Startself to:

mode := send -- enabling self
StartNeighb -- defined as forall q ∈ Neighb Send(Start , to q)

to LeadElect add PropagateStart, defined by

if Received(Start , from p) and p ∈ Process then
if mode = terminated then Start(self) -- enable self
Consume(Start , from p)

Copyright CC BY–NC-SA 4.0 25



Refinement to GraphLeadElectDiffuse

Refine TerminateDiffuse to trigger a final round which resets each
component to mode = terminated (for the next diffusing run).

TerminateDiffuse =
if status = master and quiescent and AllAcksArrived then

if mode = check then Terminate -- launch termination round
if mode = terminated then

status := idle Send(computationResult , to env )
where Terminate =
TerminateNeighb -- forall q ∈ Neighb Send(Stop, to q)
mode := terminated -- initialize mode for next diffusing run

Stop (like Start) is treated as GraphLeadElect-internal msg.

To LeadElect add PropagateTermination, defined by:

if Received(Stop, from p) then
if mode 6= terminated then Terminate
Consume(Stop, from p)

Copyright CC BY–NC-SA 4.0 26



Termination detection lemma for GraphLeadElectDiffuse

Let T = TerminationDetector(GraphLeadElectDiffuse).
Every diffusing run of T eventually terminates and does
Elaborate(Max ) (refining computationResult to cand).

More precisely: Let R be any diffusing run of T (with reliable message
passing and without infinitely lazy components).

R eventually terminates and does Elaborate(Max ) when the system
of GraphLeadElectDiffuse machines, started by an initiator in
a quiescent state, after the second TerminateDiffuse step of the
initiator enters again a quiescent state, where all components have
status = idle and mode = terminated .

Proof. Follows from the termination of GraphLeadElect runs and
from the above explained behavior of the monitoring components of
TerminationDetector. For details see ModelingBook pg.125.

Copyright CC BY–NC-SA 4.0 27



Exl.3: Concurrent emulation of synchronous processes

Goal. Emulation of synchronous runs of a network (Process ,Edge) of
communicating processes by concurrent runs of a network

ConcurSyncEmulator(Process ,Edge) = (Process∗,Edge∗)

(also called LocalSyncTransformer) of communicating
processes, assuming immediate reliable communication bw neighbors.

======================================
A round in a synchronous run is characterized by each p ∈ Process

reading its mailbox only at the beginning of the round

sending messages only at the end of the round, msgs which in the next
round are in the receivers’ mailbox

performing otherwise only non-communication local actions

Wlog we abstract from the possible sequence of local actions, treating
them as one atomic step, and assume that in each round, each process
sends exactly one (possibly empty) message to each of its neighbors.
Copyright CC BY–NC-SA 4.0 28



Characterization of synchronous Process runs

Let (Process ,Edge) be a network of communicating ASMs p with
agent ag(p) executing pgm(p) using a mailbox (p) for immediate
reliable communication with the Neighbors of p (defined via Edge).

The synchronous runs of (Process ,Edge) can be described as the runs
of the following (highly parallel) ASM. In each step it performs one step
(communication and local actions) of each of its components.

SyncNet(Process ,Edge) =

forall p ∈ Process

pgm(p)

IncreaseRound -- i. e. curRound := curRound + 1

Each round corresponds to one step of SyncNet(Process ,Edge) so
that curRound works as step counter.

Copyright CC BY–NC-SA 4.0 29



Concurrent emulation of synchronous processes

Idea (Lynch 1996, Sect.16.2, here generalized from interleaved processes
to concurrent communicating ASMs):

associate each process p ∈ Process with a synchronizer (p) which for
each round r synchronizes

– each round-r -step of p with a round-r -step of all its Neighbors

– the Process-internal communication in round r , i.e. between p and
its Neighbors (via Edge)

replace pgm(p) by SyncShell(p) which

– simulates one step of pgm(p) when ReadyForNextRoundp

– Suspends p until it has ReceivedAllMsgsFor round r + 1 and the
synchronizer (p) sends a resume msg (after p and all its Neigbors
MadeOneStep in round r)

Copyright CC BY–NC-SA 4.0 30



Graph Edge∗ of the concurrent synchronization emulator

→ indicates a communication line between neighbors.3

SYNCHRONIZER(p)

pSYNCSHELL(p)

p q

q SYNCSHELL(q)

SYNCHRONIZER(q)

NB. pgm(p) is changed to SyncShell(p) whose round-r -steps are
synchronized, by an agent with pgm Synchronizer(p), with those of
(the SyncShell instances of) all Neighbors of p (in Edge).
3 Figure c© 2003 Springer-Verlag Berlin Heidelberg, reprinted with permission

Copyright CC BY–NC-SA 4.0 31



Process∗ of the concurrent synchronization emulator

For each process p

its pgm(p) is replaced by a program SyncShell(p) which refines the
communication actions of p

a synchronization controller SyncCtl(p) is added which synchronizes
the round actions of all processes (including their communication)

Process∗ =

Process(pgm(p)/SyncShell(p)) -- process refinement

∪ SyncCtl -- adding synchronization controller

where

SyncCtl = (SyncCtl(p))p∈Process

SyncCtl(p) =

(synchronizer (p),Synchronizer(p),mailbox (synchronizer (p)))

Copyright CC BY–NC-SA 4.0 32



SyncShell(p) for the concurrent synchronization emulator

if ReadyForNextRoundp then

pgm(p)∗ -- simulate one step of pgm(p)

Suspend(p)

else

if Received(resume, from synchronizer (p)) then

Resume(p)

where

ReadyForNextRoundp iff

Resumed(p) and ReceivedAllMsgsFor (curRoundp, p)

Copyright CC BY–NC-SA 4.0 33



Suspend and Resume actions

Suspend(p) sets WaitingForNextRoundTick (p) to true, informs the
synchronizer (p) that p has performed its curRoundp step and prepares
itself for the next round (by an Increase(curRoundp)).

Suspend(p) = -- making p not ReadyForNextRound

WaitingForNextRoundTick (p) := true -- reset by Resume

InformAboutStep(p) -- step performed by pgm(p)∗

Increase(curRoundp) -- preparing for next round curRoundp + 1

Resume(p) = -- upon receiving resume msg

WaitingForNextRoundTick (p) := false

Consume((resume, from synchronizer (p))

where

InformAboutStep(p) =

Send(stepInfo(p, curRoundp), to synchronizer (p))

Resumed(p) iff WaitingForNextRoundTick (p) = false

Copyright CC BY–NC-SA 4.0 34



Simulation of pgm(p)-steps by pgm(p)∗-steps

Simulating a pgm(p)-step consists in performing this step except for
Sending Process-internal msgs (analogously for receiving)

together with the curRoundp information

not to their receiver q ∈ Neighb(p) but to the synchronizer (p)

where

Synchronizer(p) does ForwardMsgsSentBy(p, curRoundp)
to synchronizer (q)

Synchronizer(q) will PassMsgsSentTo(q , r ) to q

pgm(p)∗ = pgm(p) replacing

Send(m, to q) -- communication with round info via synchronizer

by Send((m, curRoundp, to q), to synchronizer (p))

Received(m, from q) by

Received((m, curRoundp − 1, from q), from synchronizer (p))

-- NB. m received in round r has been sent in round r − 1

Copyright CC BY–NC-SA 4.0 35



The two Synchronizer roles

ForwardMsgsSentBy process p in a round-r -step, namely to the
synchronizer (q) of each Neighbor q of p. These msgs can be:

– monitor msgs: stepInfo and resume msg

– a Process-internal mgs ∈ ProcessMsg , exchanged between
processes via a Send(msg) in some pgm(p) with p ∈ Process

Check when to CloseRound r for p by

– passing to p in one blow all ProcessMsgs which have been sent in
round r to p—Received by synchronizer (p) from synchronizer (q)
of some q ∈ Neighb(p)—to be Received by p in round r + 1

– waking up p (by a resume msg) and proceeding to the next round

Synchronizer(p) =

let r = curRound(self)

ForwardMsgsSentBy(p, r )

CloseRound(r , p)

Copyright CC BY–NC-SA 4.0 36



CloseRound(r , p) rule of Synchronizer(p)

if Received(stepInfo(p, r ), from p) -- p made a round-r -step

and (forall q ∈ Neighb(p) MadeOneStep(q , r ))

and ReceivedAllMsgsToPassTo(p, r ) then

PassMsgsSentTo(p, r ) -- msgs to-be-received in round r + 1

WakeUp(p) -- i.e. Send(resume, to syncShell(p))

where

MadeOneStep(q , r ) iff -- NB. r = curRoundq

Received(stepInfo(q , r ), from synchronizer (q))

ReceivedAllMsgsToPassTo(p, r ) iff

forall q ∈ Neighb(p) -- q has sent a msg to p in round r

forsome m Received((m, r , to p), from synchronizer (q))

NB. p assumed to send per round to each neighbor exactly one msg.

Copyright CC BY–NC-SA 4.0 37



Components of CloseRound(r , p)

PassMsgsSentTo(p, r ) = -- all msgs p receives in round r + 1

forall q ∈ Neighb(p) forall -- all msgs of type ProcessMsg

((m, r , to p), from synchronizer (q)) ∈ mailbox ∩ ProcessMsg

Send((m, r , from q), to p)

Consume(m, r , from q)

This rule is executed when ReceivedAllMsgsToPassTo(p, r ) is true.
Correspondingly we can define for ReadyForNextRoundp:

ReceivedAllMsgsFor (r + 1, p) iff

forall q ∈ Neighb(p) forsome m -- q has sent some msg in round r

Received((m, r , from q), from synchronizer (p))

ReceivedAllMsgsFor (0, p) = true -- by initialization

-- If Received(m) in round r + 1, m has been sent in round r

Copyright CC BY–NC-SA 4.0 38



Initial states & runs of ConcurSyncEmulator(Process ,Edge)

Initial states satisfy:

curRound = 0 and mailbox = ∅ for each p ∈ Process (same for
SyncNet(Process ,Edge)) and for each SyncCtl(p)

ReadyForNextRoundp = ReceivedAllMsgsToPassTo(p) = true and
ReceivedAllMsgsFor (0, p) = true for each p ∈ Process .

The concurrent emulation refines each p-step of one
SyncNet(Process ,Edge) round-r -step into:

a first SyncShell(p) step—when ReadyForNextRoundp holds for r

followed by message forwarding steps performed by synchronizer (p)
and the synchronizers of its neighbors q

followed by a CloseRound(r , p) step—when also all neighbors of p
made a round-r -step and the messages sent in round r to p have been
received by the synchronizer (p)

concluded by the second SyncShell(p) round-r -step

Copyright CC BY–NC-SA 4.0 39



ConcurSyncEmulator(Process ,Edge) correctness property

Let Rs be any run of SyncNet(Process ,Edge) and Rc any concurrent
ConcurSyncEmulator(Process ,Edge) run, both properly
initialized and started with equal values in same-named locations.

Then for every process p the following holds for every round number
r = curRoundSyncNet(Process ,Edge) = curRoundp:

when ag(p) starts its round r in Rs resp. in Rc, the runs are in
corresponding states stateRs

(r ), stateRc
(p, r ) with same values

– in same-named p-locations

– for the payload and destination of corresponding ProcessMsgs

• (m, to q) resp. (m, curRoundp, to q)

sent by ag(p) in round r to (similarly Received from) its neighbor q .

NB. Same-value property in corresponding states means

stateRs
(r ) ↓ Σp = stateRc

(p, r ) ↓ Σp

Proof: induction on r (see ModelingBook pg. 131 for details).
Copyright CC BY–NC-SA 4.0 40



References

E. Börger and A. Raschke: Modeling Companion for Software
Practitioners. Springer 2018
http://modelingbook.informatik.uni-ulm.de

The book bibliography provides exact references to the literature from
where the three examples are taken.

E. Börger and R. Stärk: Abstract State Machines. Springer 2003.

Copyright CC BY–NC-SA 4.0 41

http://modelingbook.informatik.uni-ulm.de


Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the original authors are mentioned

modified slides are made available under the same licence

the (re-) use is not commercial

Copyright CC BY–NC-SA 4.0 42


