
Egon Börger (Pisa) & Alexander Raschke (Ulm)

Modeling an Automatic Teller Machine

Illustrating Componentwise and Stepwise ASM Definition

Università di Pisa, Dipartimento di Informatica boerger@di.unipi.it
Universität Ulm, Abteilung Informatik alexander.raschke@uni-ulm.de

See Ch. 2.4 of Modeling Companion1
1 Unless stated otherwise, some figures are c©2015 ACM and are used with licence 4271320674209.

Copyright CC BY–NC-SA 4.0 1

ATM requirements (1)

PlantReq. There are many tills which can access a central resource
containing the detailed records of customers’ bank accounts.

TillAccessReq. A till is used by inserting a card and typing in a PIN
which is encoded by the till and compared with a code stored on the
card.

FunctionalReq. After successfully identifying themselves to the system,
customers may try to:

1. view the balance of their accounts,

2. make a withdrawal of cash,

3. ask for a statement of their account to be sent by post.

Information on accounts is held in a central database and may be
unavailable. If the database is available, any amount up to the total in
the account may be withdrawn, subject to a fixed daily limit on
withdrawals.

Copyright CC BY–NC-SA 4.0 2

ATM requirements (2)

CardReq. The fixed daily limit on withdrawals means that the amount
withdrawn within the day must be stored on the card. ”Illegal” cards are
kept by the till.

InterruptReq. A till or the Central Resource can be interrupted and the
connection between them can fail.

CustomerInterruptReq. Customers can change or cancel their request
any time, e.g. stop the usage, change amount they want to withdraw.

ConcurrencyReq. Concurrent access to the database from two or more
different tills is allowed, in particular concurrent attempts from two card
holders who are authorised to use the same account.

TransactionalReq. Once a user has initiated a transaction, the
transaction is completed at least eventually, and preferably within some
real time constraint.

ReliabilityReq. Minimise the possibility of the use of stolen cards to gain
access to an account.
Copyright CC BY–NC-SA 4.0 3

ATM interface structure

Balance

Withdraw

display Statement

2

2 Figure c© 2018 Springer-Verlag Germany, reused with permission.

Copyright CC BY–NC-SA 4.0 4

ATM controller architecture (Component Structure View)

TillAccessReq and FunctionalReq request a sequence of actions reflected
by sequential composition of ground model out of action components:

Idle

ProcessCardInsertion

StartPinRequest

ProcessPinRequest

ValidPin

ProcessOpRequest

Ready(ContactCR)

ProcessCRContact

WaitFor(ContactCR)

ProcessCRResponse

Terminate

Terminate

HandleFailure

Component failure triggers exit to HandleFailure component.

Copyright CC BY–NC-SA 4.0 5

ATM ground model

In parallel to the ‘normal’ session execution by Atm, at any moment
InterruptTriggers may occur and must be handled

by CustomerInterruptReq and InterruptReq

GroundAtm =

if ThereAreInterrupts

then HandleInterrupt

else

Atm

HandleFailure

InterruptTrigger

We now procedurally refine each component of GroundAtm

to capture/complete one by one the corresponding AtmRequirements

Copyright CC BY–NC-SA 4.0 6

Procedural (1, n + 1) control state ASM refinements

Procedural ASM refinement follows Knuth’s advice (1974):

. . . we rapidly loose our ability to understand larger and larger
flowcharts; some intermediate levels of abstraction are necessary.

. . . we should give meaningful names for the larger constructs in our
program that correspond to meaningul levels of abstraction, and we
should define those levels of abstraction in one place, and merely use
their names (instead of including the detailed code) when they are
used to build larger concepts.

k1 jirule ji knby . . .

In general multiple entries/exits and arbitrary—even run-time
determined—step relations (m, n) are allowed.

Copyright CC BY–NC-SA 4.0 7

Card insertion: questions about requirements

CardInserted : monitored location

becoming true/false upon physical card insertion/removal

A number of questions about the requirements:

ATM presumably assumed to be used any time only by one user

– i.e. new session can be started only when till is in mode = idle

card validity check presumably assumed

– InitializeSession and StartPinRequest only if can ReadCard

• upon Fail(InvalidCard) move to HandleFailure

meaning of ValidCard?

ValidCard =
Readable(insertedCard) and circuit(currCard) ∈ Circuit

Copyright CC BY–NC-SA 4.0 8

Card insertion: meaning of ReadCard

Domain experts must decide which are the attributes the reader can
retrieve from a card, so that the till can manage the session:

circuit(card) describing the card type, pinCode(card),
account(card)

centralResource(card) where the account(card) is managed

dailyLimit(card)

alreadyWithdrawn(day , card) indicating the total amount of money
withdrawn this day (as a date) in previous sessions at some tills using
card

dayOfLastWithdrawal(card)

Abstract from how ReadCard records card attributes:

currCard := insertedCard with derived function
attribute(currCard) = attributeValReadFrom(insertedCard)

Copyright CC BY–NC-SA 4.0 9

To-be-updated card attributes

Due to CardReq, the location alreadyWithdrawn(today , card) must be
updated, say in a component InitializeSession:

if dayOfLastWithdrawal(card) < today then

alreadyWithdrawn(today , card) := 0

Therefore today , which is monitored for ProcessCardInsertion,
must be assumed to be updated at midnight by a Calendar
component of the ATM.

Copyright CC BY–NC-SA 4.0 10

Component ProcessCardInsertion

Idle CardInserted ValidCard
ReadCard

InitializeSession
StartPinRequest

Fail(InvalidCard)

yes

no

Formally this procedural refinement is of type (1, 1)

because reading the guard goes together with writing the updates,
whatever is performed in passing from one to the next control state
counts as one step

Copyright CC BY–NC-SA 4.0 11

Component ProcessPin: modeling for change

‘Typing in a PIN’ in TillAccessReq describes one kind of user/machine
interaction:

– till will AskFor(Pin) and check whether input is a ValidPin

We make AskFor reusable as parameterized component

– parameter specifies the type of interaction object

We separate a detailed component definition— involving processing
keywise provided input streams—from its interface behavior spec

– elaborate and store the monitored userInput value asked for in a
location, say valFor (param), and enter mode Ready(param)

AskFor(param) =

valFor (param) := userInput

mode := Ready(param)

ResetTimer(AskFor(param))

Copyright CC BY–NC-SA 4.0 12

Definition of ProcessPin

Consider additional req: user HasMoreAttempts to input pin

until ValidPin or Fail(InvalidPin) or timeout interrupt

StartPinRequest SetTimer(AskFor(Pin)) AskFor(Pin)

AskFor(Pin)

Ready(Pin)ValidPin

ValidPin

HasMoreAttempts

Fail(InvalidPin)

yes

no

no

yes

ValidPin = (pinCode(currCard) = encodePin(valFor (Pin)))

where by TillAccessReq pinCode extracts the ‘code stored on the card’
and encodePin performs the ‘encoding by the till’

Copyright CC BY–NC-SA 4.0 13

Parameterized ASMs are called by name

Declaration of parameterized ASM N (x1, . . . , xn) = M

where M is an ASM whose free variables occur in x1, . . . , xn

permits to call N (exp1, . . . , expn) (by name) whereby

body M of the machine declaration is executed with the variables xi
substituted by the call parameters expi (not by their values)

– call parameters are evaluated only in the state in which the body is
executed

executing a submachine call is treated as one atomic step

– M may contain recursive calls of N

which yields a defined result only if the execution of the machine body
yields a defined result

NB. call by value is definable by

N (exp1, . . . , expn) =let (x1 = exp1, . . . , xn = expn) in M

Copyright CC BY–NC-SA 4.0 14

Component ProcessOpRequest

By FunctionalReq users have OpChoice to ask for their account balance
or an account statement or a cash withdrawal

AskFor(OpChoice) captures this choice

if op = Withdrawal the till acquires further RequiredData via
AskFor(Amount)

FunctionalReq also requests to CheckLocalAvailability of the
requested money

whether AmountExceedsDailyLimit

to which (for the sake of illustration) we add an
AmountATMUnavailability check

Copyright CC BY–NC-SA 4.0 15

ProcessOpRequest component of Atm

ValidPin

SetTimer(AskFor(OpChoice))

AskFor(OpChoice)

AskFor(OpChoice)

Ready(OpChoice)

RequiredData(valFor(OpChoice)) SetTimer(AskFor(Amount)) AskFor(Amount)

AskFor(Amount)

Ready(Amount)CheckLocalAvail

Fail(AmountAtmUnavail) Fail(AmountExceedsDailyLimit)Ready(ContactCR)

no

yes

Copyright CC BY–NC-SA 4.0 16

Describing nondeterminism by ASM choose construct

For CheckLocalAvail we show how to specify an interface behavior :

to which next control state the component may proceed depending on
the underlying data: normal exit Ready(ContactCR) or a Failure exit

CheckLocalAvail =

choose m ∈ NxtCtlState // abstract from data determining m

mode := m

if m = Ready(ContactCR) then

amount := valFor (Amount)

where NxtCtlState =

{Ready(ContactCR),

Fail(AmountAtmUnavail),

Fail(AmountExceedsDailyLimit)}

Copyright CC BY–NC-SA 4.0 17

Component ProcessCRContact

triggers a request that is sent to Central Resource (CR)

makes the till WaitFor (ContactCR) until a response is received

– by InterruptReq unless a timeout or contact failure happen

Ready(ContactCR)

ContactCR

SetTimer(ContactCR)

WaitFor(ContactCR)

Copyright CC BY–NC-SA 4.0 18

ContactCR

Send(encodetill (Atm,CR,RequestData))

Display(WaitingForCentralResourceContact)

where

Atm = address(till(self))

CR = address(centralResource(currCard))

RequestData = opChoiceData(currCard , valFor (OpChoice))

opChoiceData(card , op) = (card , op) if op ∈ {Balance, Statement}
(card , op, amount) if op = Withdrawal

Interface to ProcessCRResponse component:

monitored location CRresp where response messages from the Central
Resource (CR) are received

Copyright CC BY–NC-SA 4.0 19

ProcessCRResponse

WaitFor(ContactCR)

Received(CRresp)

type(CRresp) = ConnectionRefused
Fail(ContactResponse
(ConnectionRefused))

ProcessResponse(CRresp)

Terminate

yes

no

by InterruptReq a ConnectionRefused response may arrive

other CRresponses lead the till to normally ProcessResponse

Copyright CC BY–NC-SA 4.0 20

ProcessResponse(r)

type(r)=
IllegalCard

type(r) ∈ {InfoUnavailable,
UnknownCard, Balance, Statement}

type(r)=
Withdrawal

answer(r)=notOk answer(r)=Ok

TerminateOp
(r, {Eject(currCard),Eject(amount)})

TerminateOp
(r, {Eject(currCard)})

TerminateOp
(r, {Keep(currCard)})

TerminateOp(reason, actions) =

Display(reason) -- explain action to the user

TerminationActions := actions -- executed by Terminate

Copyright CC BY–NC-SA 4.0 21

Component Terminate

Terminate

RecordMoneyWithdrawalOnCard

Keep(currCard) ∈ TerminationActions

Eject(currCard)

SetTimer(Removal)

WaitFor(Removal)

Removed(currCard)

Eject(amount) ∈ TerminationActions

Eject(amount)

Display(amount)

SetTimer(Removal)

WaitFor(Removal)

Removed(amount)

RecordMoneyWithdrawalAtATM(amount)

Idle

no

yes

yes

yes

Retract(currCard) Idle
yes

Retract(currCard) Idle
no

Idle
no

Retract(money) Idle
no

Copyright CC BY–NC-SA 4.0 22

Terminate macros

Retract(o) =

Remove(o) -- physically remove card or money from slot

LogMissedWithdrawal(o) -- if applicable

RecordMoneyWithdrawalOnCard =

if MoneyWithdrawalToRecord then

alreadyWithdrawn(today , currCard) :=

amount + alreadyWithdrawn(today , currCard)

dayOfLastWithdrawal(currCard) := today

MoneyWithdrawalToRecord := false

RecordMoneyWithdrawalAtAtm(o) =

money(Atm) := money(Atm)− o

Copyright CC BY–NC-SA 4.0 23

HandleFailure: an example

Modular (case-by-case) definition via parameterization of Fail(param)
values of mode:

HandleFailure = -- called when mode = Fail(param)

if mode = Fail(InvalidPin) then

TerminateOp(InvalidPin, {Keep(currCard)})
else TerminateOp(mode, {Eject(currCard)})
CloseConnectionToCentralResource

Eject unreadable cards, cards of not accepted circuits, etc.

NB. cards the CR declares as IllegalCard are kept by the
corresponding TerminateOperation

Copyright CC BY–NC-SA 4.0 24

Interrupts with interrupt region

Modular (case-by-case) definition via

parameterization

separately definable concept of interrupt region where interrupt events
should have an effect

Exl: interrupt is triggered (inserted into InterruptEvent):

when user has Pressed the CancelKey and Atm IsInCancelRegion

automatically upon a Timeout(timedOp) event when the Atm
IsInTimerRegion for the timedOp

InterruptTrigger =

InterruptBy(Cancel)

InterruptBy(Time)

. . .

Copyright CC BY–NC-SA 4.0 25

Cancel and timeout interrupts

InterruptBy(Cancel) =

if Pressed(CancelKey) and IsInCancelRegion(Atm)

then Insert(Cancel , InterruptEvent)

InterruptBy(Time) =

forall timedOp ∈ {AskFor (param),ContactCR,Removal}
if Timeout(timedOp) and IsInTimerRegion(timedOp) then

Insert(timer (timedOp), InterruptEvent)

ResetTimer(timedOp)

Copyright CC BY–NC-SA 4.0 26

HandleInterrupt with priority scheme

HandleInterrupt =

let e = highPriority(InterruptEvent)

Handle(e) Delete(e, InterruptEvent)

where

Handle(Cancel) =

if IsInCancelRegion(Atm) then TerminateSession(Cancel)

Handle(timer (timedOperation)) =

if IsInTimerRegion(timedOperation) then

TerminateSession(Timeout(timedOperation))

TerminateSession(p) =

DisconnectAtmFromCR

TerminateOp(p,Eject(currCard))

mode := Terminate

Copyright CC BY–NC-SA 4.0 27

Defining interrupt regions

In control state ASMs interrupt regions are definable by mode intervals.

Exl: no Cancel command has any effect outside a user session (when
mode = idle) or when the ATM is performing automatically its final
stage to Terminate the session

IsInCancelRegion(Atm) = mode 6∈ {Idle,Terminate})
Analogously for timer regions:

IsInTimerRegion(AskFor (param)) =

mode ∈ {AskFor (param),WaitFor (param)}
IsInTimerRegion(ContactCR) =

mode = WaitFor (ContactCR)

IsInTimerRegion(RemovalCard) =

(mode ∈
{WaitFor (RemovalCard),WaitFor (RemovalMoney)})

Copyright CC BY–NC-SA 4.0 28

CentralResource

works asynchronously together with multiple ATMs

to satisfy the ConcurrencyReq, our spec permits any processing order
for independent requests

– separate priority and scheduling concerns from per-account-exclusive
access guarantee in FunctionalReq

CentralResource =

one of (AcceptRequests,HandleRequests)

where AcceptRequests =

if MailboxCR 6= ∅ then -- if some msgs arrived

choose R ⊆ MailboxCR with R 6= ∅ -- select some

forall msg ∈ R -- move them from mailbox into internal record

Insert(decodeCR(msg),Request)

Delete(msg ,MailboxCR)

Copyright CC BY–NC-SA 4.0 29

HandleRequests component of CentralResource

Let selectCR be any policy for selecting a Consistent set of requests for
a parallel handling.

HandleRequests =

if Request 6= ∅ then -- if there are requests

let R = selectCR(Request) -- select a Consistent subset

forall r ∈ R --Handle all of them

Handle(r)

Delete(r ,Request)

Consistent(R) iff -- no two withdrawals from one account

thereisno r , r ′ ∈ R with r 6= r ′ and

account(r) = account(r ′) and op(r) = op(r ′) = Withdrawal

Copyright CC BY–NC-SA 4.0 30

Handle(req) component of Atm

How CR elaborates a correct CRresponse of type op(req):

let atm = sender(req), card = card(req), account = account(card), op = op(req), amount = amount(req)

Known(card)

Blocked(card)

op = Balanceop = Statement op = WithDrawal

Send(atm,op,mailed)

TriggerMail(req)

Available(info(account))

Send(atm,op,bal(account)

Send(atm,InfoUnavailable)

Available(info(account))

CanBeGranted
(amount,account)

Send(atm,op,notOk) Send(atm,op,Ok,amount)

yes

no

yes no no yes

no yes

Send(atm,UnknownCard)
no

Send(atm,IllegalCard)
yes

Copyright CC BY–NC-SA 4.0 31

Integrate data into ctl flow: by data refinement (type (1, 1))

CheckLocalAvail = choose m ∈ NxtCtlState

mode := m

if m = Ready(ContactCR) then amount := valFor (Amount)

Refinement computing how mode update depends on data:

Ready(Amount)

WithinDailyLimit Fail(AmountExceedsDailyLimit)

AtmAvail

amount := valFor(Amount)

Fail(AmountAtmUnavail)

Ready(ContactCR)

yes

no

yes

no

Copyright CC BY–NC-SA 4.0 32

Integrate data into ctl flow: by procedural refinement

Exl: combined data and operation refinement of AskedFor =

valFor (param) := userInput mode := Ready(param)

ResetTimer(AskFor(param)))

Idea: implement successive reading and processing of single input key
values inserted by the user as follows:

start to InitializeInputElaboration

–Display request to user

– guarantee robustness: keys pressed before start of WaitFor (param)
should yield no input

iterate ReadInputStream and ProcessInputStream

upon a Confirm key input move to Ready(param)

Copyright CC BY–NC-SA 4.0 33

Procedural refinement of AskedFor component

AskedFor = valFor (param) := userInput ,

mode := Ready(param),ResetTimer(AskFor(param))

AskFor(param)

InitializeInputElaboration(param)

WaitFor(param)

ReadInputStream

ProcessInputStream

Confirming(val,param)IllegalFor(val,param) LegalFor(val,param)

Display(Ignored(val,param)) Record(userInput,param)

ResetTimer(AskFor(param))

UpdateInputBy(val,param)

Ready(param)

Copyright CC BY–NC-SA 4.0 34

Initialization component of refined AskedFor

InitializeInputElaboration(param) =

Initialize(inputStream) -- Start listening to user input

Initialize(userInput) -- Start processing user input

Display(AskFor (param)) -- Ask user for param

if param = Pin then CountDown(attemptsFor (Pin))

The auxiliary macros are defined as follows:

Initialize(Stream) = (Stream := [])

Initialize(userInput) = (userInput := [])

CountDown(attemptsFor (Pin)) =

attemptsFor (Pin) := attemptsFor (Pin)− 1

NB. An initialization of attemptsFor (Pin) belongs to (for example)
InitializeSession.

Copyright CC BY–NC-SA 4.0 35

Read/ProcessInputStream component

what if a user hits simultaneously a set of multiple keys?

– hardware transforms the set into a randomly ordered inputStream

– before applying randomOrder to a set , the hardware will
truncate(set) in a device dependent manner to a subset

inputVal yields input value sequence for key sequence

ReadInputStream =

let PressedKeys = {key | Pressed(key)}
let Newinput =

inputval(randomOrder (truncate(PressedKeys)))

AddAtTheLeft(Newinput , inputStream)

ProcessInputStream =

if inputStream 6= [] then

let val = fstOut(inputStream) -- say rightmost element

RemoveAtTheRight(val , inputStream)

Copyright CC BY–NC-SA 4.0 36

UpdateInputBy component

writes the inputStream values that are LegalFor param into
userInput

since user can change the input any time (CustomerInterruptReq),
Delete key is LegalFor every param

UpdateInputBy(val , param) =

if val 6= Delete then AddToInput(val , param)

if val = Delete then RemoveFromInput(param)

AddToInput(val , param) =

userInput := concatenateAtTheRight(userInput , val)

Display(concatenateAtTheRight(userInput , val), param)

RemoveFromInput(param) =

userInput := removeLast(userInput)

Display(removeLast(userInput), param)

Copyright CC BY–NC-SA 4.0 37

Last Askfor step when the user confirms the input

the input is recorded in interface location valFor (param)

due to in-time termination the timer is reset

mode switches to Read(param)

Confirming(val , param) if and only if param ∈ {Pin,Amount} and val = Confirm

param = OpChoice and val ∈ {Balance, Statement ,Withdrawal}
Record(input , param) =

valFor (param) := input if param ∈ {Pin,Amount}
valFor (param) := param if

param ∈ {Balance, Statement ,Withdrawal}

Copyright CC BY–NC-SA 4.0 38

Atm Unfolded Refined View
Idle CardInserted ValidCard

ReadCard

InitializeSession
StartPinRequest

Fail(InvalidCard)

yes

no

SetTimer(AskFor(Pin)) AskFor(Pin)

AskFor(Pin)

Ready(Pin)ValidPin

ValidPin

HasMoreAttempts

Fail(InvalidPin)

yes

no

no

yes

SetTimer(AskFor(OpChoice))

AskFor(OpChoice) AskFor(OpChoice)

Ready(OpChoice)RequiredData(valFor(OpChoice))SetTimer(AskFor(Amount))AskFor(Amount)

AskFor(Amount) Ready(Amount)

WithinDailyLimit

AtmAvail
amount :=

valFor(Amount)

Fail(AmountExceedsDailyLimit)

Fail(AmountAtmUnavail) Ready(ContactCR)

no

yes

yes

yesno

no

ContactCR

SetTimer(ContactCR)

WaitFor(ContactCR)Received(CRresp)
type(CRresp)=

ConnectionRefused

Fail(ContactResponse
(ConnectionRefused))

type(CRresp)=
IllegalCard

type(CRresp) ∈ {InfoUnavailable,
UnknownCard, Balance, Statement}

type(CRresp)=
Withdrawal

answer(CRresp)=
notOk

answer(CRresp)=
Ok

TerminateOp
(CRresp, {Eject(currCard),Eject(amount)})

TerminateOp
(CRresp, {Eject(currCard)})

TerminateOp
(CRresp, {Keep(currCard)})

Terminate

no

yes

RecordMoneyWithdrawalOnCard

Keep(currCard) ∈ TerminationActions
Eject(currCard)

SetTimer(Removal)

WaitFor(Removal)Removed(currCard)

Eject(amount) ∈ TerminationActions

Eject(amount)

Display(amount)

SetTimer(Removal)

WaitFor(Removal)Removed(amount)

RecordMoneyWithdrawalAtATM(amount)

no

yes

yes

yes

Rectract(currCard)
yes

Rectract(currCard)
no

no

Rectract(money)
no

HandleFailure

Copyright CC BY–NC-SA 4.0 39

References

Requirements from: Automatic Teller Machine or Till: Case Study

– The FM’99 ATM modelling challenge

E. Börger and S. Zenzaro: Business Process Modeling for Reuse and
Change via Component-Based Decomposition and ASM Refinement.

– Proc. S-BPM One 2015. ACM Digital Library, ISBN
978-1-4503-3312-2.

S. Zenzaro: A CoreASM refinement implementing the ATM ground
model.

– available at http://modelingbook.informatik.uni-ulm.de (October
2014)

E. Börger and A. Raschke: Modeling Companion for Software
Practitioners. Springer 2018
http://modelingbook.informatik.uni-ulm.de

Copyright CC BY–NC-SA 4.0 40

http://modelingbook.informatik.uni-ulm.de

Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the two original authors are mentioned

modified slides are made available under the same licence

the (re-) use is not commercial

Copyright CC BY–NC-SA 4.0 41

