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Theme of this lecture

Compare technically , sine ira et studio, the use of Petri nets (PNs) and
of Abstract State Machines (ASMs) for

modeling distributed algorithms

analysing properties of distributed algorithms

using concrete characteristic examples .

This endeavour turned out to be an exercise in building appropriate

communicating ASM ground models

for requirements which are formulated in natural language.
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Procedure for concrete comparison of PNs and ASMs

For evaluation fairness we base the comparison on:

W. Reisig, Elements of Distributed Algorithms (1998)2 for

– notion of Petri net, defined there to “provide the expressive power
necessary to model elementary distributed algorithms adequately,
retaining intuitive clarity and formal simplicity” (p.VII)

– “choice of small and medium size distributed algorithms” proposed
as representative “for a wide class of distributed algorithms” which
“can help the practitioner to design distributed algorithms” (p.V)

– we select however the ‘Advanced System Models’ from op.cit.
(instead of the elementary ones) to make the comparison more
meaningful

Nancy A. Lynch, Distributed Algorithms (1996) for requirements
(where not taken directly from Reisig’s book)

2 The PN figures are taken from there, c© 1998 Springer-Verlag Berlin Heidelberg, reused with permission
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The declared goal of modeling and verification

“help the practitioner to design distributed algorithms” (p.V)

“retaining intuitive clarity and formal simplicity” (p.VII) resp.

“make intuitive statements and conclusions transparent and precise,
this way deepening the reader’s insight into the functioning of
systems”(p.143)

Therefore, when below we compare PN/ASM-based proofs it is

NOT about machine supported (automatic or interactive) mechanical
model checking or theorem proving

– such additional value requires additional effort!

but about traditional mathematical proofs deviced for human readers

– to support the practitioner’s intuitions and his understanding that
and why an algorithm does what the requirements ask it to do
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Assuming abstract communication medium

The algorithms describe communicating Processes, each equipped with
its mailboxself and the following actions/predicates:

Send(msg , to p) -- deliver msg to mailbox of p

-- triggers communication medium to Insert(msg ,mailboxp)

Received(msg) = (msg ∈ mailbox ) -- msg has been delivered

Consume(msg) = Delete(msg ,mailbox )

Abstract Insert action at the receiver process happens

immediately in the synchronous (reliable) model

eventually in the asynchronous (reliable) model

This abstracts from introducing explicit communication channels

Chanp,q linking outMailbox (p) to Chan input and Chan output to
inMailbox (q)
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Flooding leader election over connected graphs (Lynch 4.1)

Requirement: Design and verify an algorithm such that

over a finite connected directed graph (Process ,Edge)

using communication only bw Neighbors

eventually every process knows the leader max (Process) (wrt linear
order < of Processes) and the algorithm terminates.

Algorithmic idea: repeatedly each process p alternates

to first Propose its current leader knowledge cand (greatest process
seen so far, initially candp = p) Sending it to its Neighbors

then to Check the Proposals (Received in the initially empty
mailbox = Proposals) whether they Improve its cand value

until everybody knows the leader.
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Petri net encoding of FloodingLeadElect

Source: W. Reisig, Elements of Distributed Algorithms. Fig.32.1
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From English to ASM: 2-phase FloodingLeadElect

Propose = forall q ∈ Neighb Send(cand , to q)

ProposalsImprove = (max (Proposals) > cand)

ImproveByProposals = (cand := max (Proposals))

Each family of (p,FloodingLeadElect) forms a concurrent ASM.
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Comparison reveals Petri net idiosyncrasy (1)

low level token-based encoding of objects/agents & of actions as token
manipulations buries intuitive meaning of single agents’ actions

PN implementation of forall q ∈ Neighb Send(cand , to q)

– deletes any token (x , y) (read: a process x with leader candidate y)
from place pending

– adds the set M (x , y) = W (x )× {y} of tokens to place messages

•W (x ) encodes the logical expression ‘forall q ∈ Neighb’: instead
of communication medium forwarding candidate msg y into
neighbors’ local mailbox es it is x which moves around all its
neighbors (coupled with y) to place messages (a global mailbox)!

– adds token (x , y) to place updating

• passing token (x , y) from pending to updating encodes mode
update for x from send (proposeToNeighbors) to receive
(checkProposals): why should x move & y be dragged along?

initialization cand = self encoded by token set V in place pending
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Comparison reveals Petri net idiosyncrasy (2)

global overall process view

obstructs separation of concerns: in one PN initialization and actions
of each single process instance are detailed explicitly

– moving x around (for ≤) where only cand/msg y/z needed

– instead of describing them locally, separately for parameterized single
processes Propose, CheckProposals,
ImproveByProposals to keep models small (easy to understand
and analyse)

obfuscates architectural system view (communication structure)

burdens net layout with background elements

– instead of separating background and control concerns, here the
graph (Process ,Edge) with < and Neighborhood relation

Consequence: lack of support for componentwise and stepwise refinable
design/analysis of concurrent processes with multiple component types:
complicates implementation

Copyright CC BY–NC-SA 4.0 10



Comparison reveals Petri net idiosyncrasy (3)

visualization helpful mostly for control flow, resorting to less clear
encoding of data flow in PN:

– alternating bw pending and updating explicitly visualized

– only ‘indirect’ (implicit) visibility of checking Proposals

• PN describes it elementwise : a low-level implementation!

compared to the (via max function) conceptually high-level
integration of checking Proposals into the ASM flowchart

Nevertheless, PN diagrams are considered as defining the algorithm:

“The hurried reader may just study the pictures.” (Reisig p.V)

“Petri nets are a graphical notion and at the same time a precise
mathematical notion”. This is generally considered among “the most
important properties” of PNs (Desel et al. 2001)

But large unstructured diagrams, without appropriate subdiagram
concept, tend to become difficult to understand and analyse.
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Verifying correctness of FloodingLeadElect

Proposition: In every concurrent run of Processes, each equipped
with program FloodingLeadElect, if every enabled process will
eventually make a move, eventually for every p ∈ Process holds:

– cand = max (Process) (everybody knows the leader)

– mailbox Proposals = ∅ (no more communication)

– mode = checkProposals (quiet mode)

Proof: induction on runs and on the sum of the differences
diff (max (Process), cand) until this sum becomes 0

Main step: each time a process p (e.g. max (Process)) PROPOSEs
itself to a smaller neighbor q ∈ Neighbp, next time that neighbor checks
it discovers that its ProposalsImprove and increase candq (wrt <)
yielding a decrease of diff (max (Process), candq).

Compare with technically involved (formalistic, hard to follow) ‘proof
graph’ based Petri net verification in Reisig pg. 258-260.
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Master/Slave agreement protocol requirements

Requirement: Algorithm for a master having a JobToAssign to slave
agents, job that will be executed by all slaves only if all of them have
confirmed to the master to accept to execute and will be canceled if
some of them refuses execution. (op.cit. Sect.30)

Algorithmic Idea:

the master (when it has a JobToAssign) starts by sending an inquiry
to each slave (Enquires) and then waits for the answers

– each slave (when Asked) Answers to accept or refuse

if all AnswersArrived the master sends to each slave a msg to

–OrderJob in case all slaves accepted

–OrCancel the request (otherwise)

• slaves change mode UponJobArrival or UponCancelMsg

Goal: eventually the master becomes idle, with either all slaves idle too
or all slaves busy (executing the accepted job).
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From English to ASM: Master/Slave programs
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From English to ASM: Master/Slave states (signature)

master : a distinguished agent with locations:

– job ∈ Job for the job to assign to the slaves

– JobToAssign, a trigger predicate signalling that the master should
start trying to assign the job

– mode ∈ {idle,waitingForAnswer}, initially mode = idle

– program Master

Slaves : a set of agents with locations:

– mode ∈ {idle,waitingForJob, busy}, initially mode = idle

– program Slave
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From English to ASM: Master predicates and actions

Enquire = forall s ∈ Slave Send(enquire, to s)

AnswersArrived = forall s ∈ Slave

Received((accept , s)) or Received((refuse, s))

OrderJobOrCancel =

if SomeSlaveRefused then forall s ∈ Slave Send(cancel , to s)

else forall s ∈ Slave Send(job, to s)

CleanUp -- clean up work for next round

SomeSlaveRefused =forsome s ∈ Slave Received((refuse, s))

CleanUp =

mailbox := ∅
JobToAssign := false -- consume input trigger
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From English to ASM: Slave predicates and actions

Asked = Received(enquire)

Answer =

choose answer ∈ {accept , refuse}
Send((answer , s), to master )

Consume(enquire) -- consume input msg

UponCancelMsg = Received(cancel)

UponJobArrival = Received(job)
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Master/Slave correctness proof

Proposition. In every concurrent run of a set of master and slaves, all
equipped with the corresponding Master,Slave algorithm,

if the master starts to Enquire and every enabled agent will
eventually make a move,

then eventually the master becomes idle and

– either all slaves become idle too

– or all slaves become busy (executing the job sent by the master).

Proof: by run induction investigating the agents’ phases.
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Petri net encoding of Master/Slave agreement

Petri net idiosyncrasy: complex graphical layout (even for small
systems), extraneous to algorithmic structure, complicates understanding
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Global PN view complicates order cancellation

Global overall process model of Fig.30.1 lets the slaves organize the
order cancellation among themselves, without further master/slave
communication

in case one slave x refuses, it triggers (by transition c)

– the master to change mode (inverting the master/slave relation!)

• walk from place master pending to place answered slaves

to prepare its return to mode idle

– the other processes (in U − x ) to (via transition d or e)

• prepare cancellations (by walking to that place)

• inform the master to have answered (never mind what) by walking
to place answered slave

NB. The requirements were: ‘Each slave ... reports ... acceptance or
refusal to the master’ and ‘In case one slaves refuses, the master sends a
cancellation to each slave’ (op.cit. p.119)
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Master/slave Petri net verification: (1) rename places

Step 1: redraw the diagram and rename the places (p.255)
‘The essential aspect ... in the redrawn version ... is formally represented
by (1)’
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Master/slave PN verification: (2) prove auxiliary invariants
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Master/Slave: (3) ‘A proof graph for the essential property’

The nodes of this graph are justified on p.257-258 using some previously
defined and justified ‘proof patterns’ (ibid., Sect.69)
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Acknowledged Broadcast Algorithm

Requirement (Lynch 4.2.2)

Distributed algorithm that guarantees an initiator ’s msg being
broadcast (building a spanning tree) and acknowledged (echoed)
through a connected undirected graph communicating bw Neighb

Algorithmic Idea

distinguished initiator upon BroadcastTrigger will Broadcast an
info msg to its Neighbors and then waitForAck msgs from them

if a not yet informed non-initiator node
ReceivedInfoFromSomeNeighbor it will
PropagateInfoToNonParentNeighbors and then
waitForAck

once a non-initiator ReceivedAckFromAllChildren it in turn sends an
AckToParentNeighb node by which it had been informed

initiator once it ReceivedAckFromAllChildren Terminates
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From English to ASM: 2-phase Echo algorithms

NB. Upper lines describe building a Breadth-First Spanning Tree,
lower lines notification of completion from leaves back to initiator.
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From English to ASM: Echo state (signature)

Node ∪ {initiator}: connected undirected graph of agents with locs:

– Neighb, the set of neighbors of a node

– mailbox (called EchoMsg) for messages infoFrom(n), ackFrom(n),
IamYourChild(n), IamNotYourChild(n)

• where n ∈ Node ∪ {initiator}, initially empty

– parent ∈ Node ∪ {initiator}, initially undef ined

• records a neighbor node who has sent an info msg which is to be
acknowledged—once all Children to whom the info msg is
forwarded have acknowledged that msg (not needed for initiator)

initiator equipped with program Initiator, input location
(monitored event) BroadcastTrigger , initially mode = broadcast

each a ∈ Node equipped with program Response, initially
mode = listenToInfo
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From English to ASM: Echo initiator/response actions

Broadcast = -- triggers building breadth-first spanning tree

forall n ∈ Neighb Send(infoFrom(initiator ), to n)

Terminate = Empty(EchoMsg) -- empty mailbox for next round

ReceivedInfoFromSomeNeighb =

forsome p ∈ Neighb Received(infoFrom(p))

PropagateInfoToNonParentNeighb = -- tree building step

choose p ∈ Neighb with Received(infoFrom(p))

forall n ∈ Neighb \ {p} Send(infoFrom(self), to n)

parent := p -- define receiver of later ackFrom msg

InformAboutChildReln(p)
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From English to ASM: Echo response actions

ReceivedAckFromAllChildren = -- true at leafs

ChildKnowlIsComplete and forall m ∈ Children

Received(ackFrom(m))

Childrenn = {m ∈ Neighbn | parent(m) = n}
AckToParentNeighb = -- pass notification along spanning tree

Send(ackFrom(self), parent)

parent :=undef Empty(EchoMsg) -- clear for next round

InformAboutChildReln(p) =

Send(IamYourChild(self), p)

forall q ∈ Neighb \ {p} Send(IamNotYourChild(self), p)

ChildKnowlIsComplete iff forall n ∈ Neighb

Received(IamYourChild(n)) or Received(IamNotYourChild(n))
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Echo correctness property

Proposition

In every concurrent Echo run (where each enabled agent will eventually
make a move):

each time the initiator performs a Broadcast of an infoFrom msg
it will eventually Terminate (termination)

the initiator will Terminate only after all other agents have
Received that infoFrom msg and have acknowledged this to their
parent neighbor (correctness)

Proof. Follows by run induction from two lemmas.
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Echo correctness proof

Lemma 1. In every concurrent (completed) Echo run, each time an
agent executes PropagateInfoToNonParentNeighbors, in
the tree of agents waitingForAck the distance to the initiator grows
until leafs are reached.

– Proof by downward induction on Echo runs

Lemma 2. In every concurrent (completed) Echo run, each time an
agent executes AckToParentNeighbor, in the tree the distance
to the initiator of nodes with a subtree of informed agents shrinks,
until the initiator is reached.

– Proof by upward induction on Echo runs

Compare such step-properties-based intuition-guided inductions with
technically involved lengthy proof graph verification in Reisig p.260-266
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Petri net encoding of Echo algorithm

NB. 2-page explanation of this encoding in op.cit. p. 127-129.
Hides intuition of underlying spanning tree method.
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Load Balancing in rings (modeling agents’ interaction)

Goal: distributed algorithm for reaching workload balance among a
fixed set of (say at least 3) processes in a given ring using

– communication only between right/left neighbors

– abstract message passing and task transfer mechanism

– fixed total workload (below made subject to dynamic change)

Algorithmic Idea: every process (ring node) alternately

– Sends

• a LeftNeighbLoad message (i.e. its workLoad) to its
rightNeighbor,

• a task Transfer mssg to its left neighbor to balance their workloads

– when ReceivedTransfer msg t from its right neighbor accepts the
task t (if t 6= nothingToTransfer) to balance their workloads.

so that eventually the workload difference of two nodes becomes ≤ 1
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Petri net encoding of distributed load balancing
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From English to ASM: 3-phase RingLoadBalance

flowchart encoded in state i -Petri-subnet (i = 1, 2, 3)

places workloadmessage/updatemessage are global (Sic) mailboxes

– one mailbox for all processes

transfered tasks themselves are not represented in the PN (Sic)
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From English to ASM: states of Ring Load Balancing

Process, a static set of agents, each equipped with

static ring structure with leftNeighb, rightNeighb ∈ Process

the current WorkLoad ⊆ Task

– workLoad =|WorkLoad | count (derived location)

mailbox called WorkLoadMsg , initially empty

– containing LeftNeighbLoad msgs from the left neighbor

• i.e. a workLoad sent by its leftNeigb

or task Transfer msgs (from the right neighbor)

• i.e. transfer ∈ Task ∪ {nothingToTransfer}
mode switching from initial value informRightNeighb to
transferToLeftNeighb back to acceptFromRightNeighb

program RingLoadBalance
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From English to ASM: Interaction with left neighbor

ReceivedLeftNeighbLoad iff

thereissome n ∈ Nat ∩WorkLoadMsg

TransferTaskToLeftNeighb =

let {leftNeigbLoad} = WorkLoadMsg

if workLoad > leftNeigbLoad -- there is a task to transfer

then choose task ∈WorkLoad

Send(task , to leftNeighb)

Delete(task ,WorkLoad)

else Send(nothingToTransfer , to leftNeighb)

Consume(leftNeighbLoad)
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From English to ASM: Interaction with right neighbor

ReceivedTransfer iff

thereissome t ∈ (Task ∪ {nothingToTransfer}) ∩WorkLoadMsg

AcceptTask =

let {transfer} = WorkLoadMsg

if transfer ∈ Task then Add(transfer ,WorkLoad)

Consume(transfer ) -- msg removal from mailbox
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RingLoadBalance correctness property

Proposition. In every concurrent run of processes equipped with
RingLoadBalance, if in the run every enabled process will
eventually make a move, then eventually the workload difference
between two nodes becomes and remains at most 1 and the total
workload remains constant.

Proof by induction on the workLoad count differences. Let w be the
sum of workLoad count of all processes, a =| Process |.

Case 1: a|w . Then eventually workLoad(p) = w/a for every process
p.

Case 2: otherwise. Then eventually the workLoad of nodes will differ
by at most 1.

Compare with complicated 6-pages-long proof in Reisig pg.291-297.
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Ring load balance with dynamic WorkLoad change

Requirement: environment may trigger to ChangeWorkLoad by
increasing or decrasing WorkLoad by a set of tasks (Reisig 37.4)

Modeling idea: each process watches a trigger (monitored location)

workLoadChange with values in {add(T ), delete(T ), noInput}

When triggered (by the env!) the process will ChangeWorkLoad,
otherwise it executes RingLoadBalance (as before)

From English to ASM:

WorkLoadChange iff workLoadChange ∈ {add(T ), delete(T )}
ChangeWorkLoad =

if workLoadChange = add(T ) then Add(T ,WorkLoad)

if workLoadChange = delete(T ) then Delete(T ,WorkLoad)

Consume(workLoadChange) -- input consumption
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From English to ASM: DynRingLoadBalance algorithm

NB. Typical conservative refinement: newProgram in newCase,
otherwise unchanged (supporting componentwise design)

Copyright CC BY–NC-SA 4.0 40



Petri net refinement: env trigger as nondeterminism

Petri net idiosyncrasy (global system view):
external environment triggers are modeled as internal transition
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Abuse of nondeterminism

the lack of component structure in PNs

– more generally of the structure of the communication between agents
and/or their environment

leads to model env actions by nondeterministic internal transitions

– here change to model the interaction of the (one global?)
environment with any local process, justified as follows:

‘From the perspective of the local balance algorithm, this
interference shines up as nondeterministic change of the cardinality
of the site’s workload.’ (op.cit. p.141-142)

Other exl below: msg loss by communication medium modelled as
nondeterministic internal action of PN for file transfer protocol!

“input actions are assumed not to be under the automaton’s
control—they just arrive from the outside” (Lynch p.200)
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Consensus in graphs (Dijkstra 1978)

Requirement (as interpreted by Reisig pg.134)

Design a distributed algorithm to “organize consensus about some
contract or agreement among the sites of a network” (graph), using
only communication between neighbors, without considering “neither
the contents of messages nor the criteria for a site to accept or refuse
a proposed contract”

Algorithmic Idea. Every agent (site) has 4 possible actions:

spontaneously go to agreed (when without new requests)

LaunchNewRequest to its neighbors and waitForOk from them

receive and Answer requests

if AllNeighbAccept its last launched request either go to agreed or
once more LaunchNewRequest

Goal. Stability Property: if the algorithm terminates (maybe never),
then all agents agreed and there are no requests left.
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From English to ASM: Consensus algorithm

ChoiceIsToAgree visualizes dominant nondeterminism in start phase
(see below its role for the refinement by a quiet/demanded attribute)

Petri net idiosyncrasy: nondeterminism is not directly visible but has to
be extracted from the edge structure at pending sites
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From English to ASM: Consensus state

Node: graph of agents (sites) with locations:

– Neighb, the set of neighbors of a node

– mailbox (called ConsensusMsg) for messages requestFrom(n),
replyFrom(n) where n ∈ Node, mailbox initially empty

– phases mode ∈ {start ,waitForOk , agreed}, initially mode = start

– program Consensus

• using a dynamic choice function agent chooses upon start (e.g.
non-deterministically, maybe otherwise) bw multiple enabled
transitions

NB. Instead of abstracting from msg content, for further refinement one
would better parameterize replies by the request to which they answer:

replyFrom(n, requestFrom(m))

For strict model comparability we do not pursue this further.
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From English to ASM: Consensus agree/propose actions

ChoiceIsToAgree iff choice({agree, propose}) = agree

LaunchNewRequest = -- broadcast new request to neighbors

forall n ∈ Neighb Send(requestFrom(self), to n)

ReInitializeReplies

ReInitializeReplies =

forall n ∈ Neighb Consume(replyFrom(n))

AllNeighbAccept = forall n ∈ Neighb Received(replyFrom(n))
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From English to ASM: Consensus reply action

ReceivedRequest =

forsome n ∈ Neighb Received(requestFrom(n))

Answer = -- better specify using forall instead of choose

choose n ∈ Neighb with Received(requestFrom(n))

Send(replyFrom(self), to n)

Consume(requestFrom(n))
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Petri net model for Consensus

Petri net idiosyncrasy: encoding of requests/answers by tokens
(y , x )/(x , y) in ‘initiated/completed’ yields artificial initialization

‘Initially ... each msg is completed (i.e. in the hands of its sender)’

(encoding mailbox = ∅ at start) & makes req/answ checking tricky
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Refining Consensus by quiet/demanded sites

Requirements Change (‘Advanced Consensus’, Reisig p.136)

... two further states, demanded sites and quiet sites . All sites are
initially quiet . Each newly sent message ... may cause its receiver ...
to swap from demanded to quiet and vice versa... A demanded site
u is not quiet . If demanded and pending , the immediate step to
agreed is ruled out.

—————————————————————–

ASM refinement of structurally unchanged Consensus by

Quiet ∈ {true, false}, Demanded = not Quiet
attribute added to signature

Swap(Quiet) = (Quiet :=not Quiet): action added to Answer

Quiet = true: constraint added to ChoiceIsToAgree guard

That’s all one needs to capture the requirements change!
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‘Advanced Consensus’ Petri net (with quiet/demanded sites)

Petri net idiosyncrasy: token encoding of agent attributes requires new
places & structural diagram changes to restrict/add guards/actions
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Proving stability property for Consensus

Proposition. In every terminating concurrent run of agents, each
equipped with Consensus, the following holds:

every agent agreed (read: is in mode = agreed)

no request messages are left unanswered (read: for every agent its
mailbox ConsensusMsg = ∅)

Proof follows from unfolding the definition of
LaunchNewRequest and Answer.

Compare to complicated proof (with additional complexity that results
from Petri net technicalities) in op.cit., pg.279-283
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File Transfer Acknowledgment: Alternating Bit Protocol

Goal. Protocol to transfer a finite sequence F (1), . . . ,F (n) of files
from a sender to a receiver s.t. eventually the receiver has received the
entire sequence (say F = G), assuming that (only finitely many
consecutive) messages may get lost (but not changed) via the
communication medium (which is kept abstract).

Algorithmic idea. In rounds (one per file) sender Sends the
current file and continues to ReSendFile upon timeout until an ack
of receipt arrives from the receiver , whereafter in currRound + 1
sender will StartNxtFileTransfer until the sequence is
transfered.

When sending file F (round) a sync bit round mod 2 is

– attached to file msgs (F (round), round mod 2)

– extracted and resent by the receiver as acknowledgment msg

– checked upon ReceivedMsg by sender/receiver for Match ing own
sync bit and in case of matching is flipped for next round + 1
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From English to ASM: AltBit protocol
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From English to ASM: Alternating Bit state

mailbox MsgQueue: queue reflects no-msg-overtaking assumption

– FileMsgs (F (i), i mod 2) at receiver , AckMsgs ∈ {0, 1} at sender

– projection fcts to extract file((f , b)) = f and syncBit

syncBit((file, b)) = b, syncBit(bool) = bool

currRound ∈ {0, 1, . . . , n}: identifier of currently transmitted file

– initially currRound = 0 at sender, currRound = 1 at receiver;
receiver remains round-ahead of sender :

currRound(sender ) ≤ currRound(receiver )

– derived synchronization bit currRound mod 2

timeout : interface to timer mechanism triggering resending

file sequence locations F (at sender) and G (at receiver initially [ ])

Assumption that (only finitely many consecutive) messages may get lost
means that for every Send/ReSend... sequence eventually some
Send results in delivery into the recipient’s mailbox.
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From English to ASM: Alternating Bit sender actions

StartNextFileTransfer =

Send((nextFile, nextSyncBit), to receiver )

IncreaseRound

where nextFile = F (currRound + 1)

nextSyncBit = currRound + 1 mod 2 -- flipped sync bit

ReSendFile =

Send((F (currRound), currRound mod 2), to receiver )

ReceivedMsg = iff MsgQueue 6= [ ] -- mailbox not empty

Match iff syncBit(currMsg) = currRound mod 2

CloseRound = Consume(currMsg)

where currMsg = head(MsgQueue)

IncreaseRound = (currRound := currRound + 1)
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From English to ASM: Alternating Bit receiver actions

Receive&Ack =

StoreFile

SendAck

Consume(currMsg)

ReSendAck = -- NB. receiver is round-ahead of sender

Send(flip(currRound mod 2), to sender ) -- previous sync bit

where

SendAck = Send(syncBit(currMsg), to sender )

StoreFile = (G(currRound) := file(currMsg))

NB. Assume timeout to be initialized such that ReSendAck can
happen only after the first Receive&Ack (e.g. by initializing
timer =∞).
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Correctness of AltBit runs (termination with F = G

is easily proved by induction on AltBit run phases:

In op.cit. we found no proof for the AltBit Petri net.
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Alternating Bit Petri Net encoding
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Petri net idiosyncrasies observable in AltBit net

Token-based transition view (token presence-checking/deletion/insertion)

imposes moving around unchanged data—bw places or worse to delete
and simultaneously add them from/to one place

– technicality with overwhelming effect on net size and readability

• analogous to frame problem of logical descriptions of no-change
part of actions

imposes doubling of locations for same data which are involved
(possibly with different current values) in different transitions

– e.g. actualbit/repeatedbit places double syncBit location at both
sender and receiver part of the net

invites to model natural timeout trigger for resending as (here rather
inappropriate) non-determinism

NB. Petri net technicalities for AltBit explained in op.cit. on 5 pages!
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Improving AltBit protocol by ‘sliding window’ technique

Idea: get rid of no-msg-overtaking assumption replacing single file
transfer rounds by (re)sending in any order multiple files F (i) (and
corresponding acks) distinguished by their index i

above called currRound , now used as syncBit instead of i mod 2

in a window [low , high] between low and high s.t.

initially low = 1, high = 0 at sender and receiver

sender can perform StartNextFileTransfer and
IncreaseWindow by new syncBit high := high + 1 as long as
not FullWindow

if Acknowledged(low ) (read: upon ack receipt of file with index low)
sender will ReduceWindow at its left end (low := low + 1)

since highreceiver ≤ highsender , each time a file is received for the first
time, its index i is larger than the receiver ’s high window end,
triggering to SlideWindow at the right end by setting high := i
(and adapting its left end low correspondingly)
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Petri net redesign: Sliding Window with unbounded indices

Petri net idiosyncrasy: refinements tend to impose structural net changes
(explained in op.cit on 3.5 pages!)
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From English to ASM: SlidingWindow protocol

Component structure of AltBit preserved except for adding
ReduceWindow. Sequential send/waitForAck control flow collapsed

NB. All enabled actions can be performed in parallel
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Sliding Window sender action refinement

StartNextFileTransfer

– guarded by not FullWindow

• where FullWindow = high − low + 1 = maxWinSize

– refined by

nextFile = F (high + 1), nextSyncBit = high + 1
IncreaseRound = (high := high + 1) -- IncreaseWindow

ReSendFile = Send((F(low),low), to receiver )

Match = (low ≤ syncBit(currMsg) ≤ high) -- syncBit in window

CloseRound refines Consume(currMsg) by additionally
recording that receipt of currMsg has been acknowledged, i.e.

Acknowledged(syncBit(currMsg)) := true

initially Acknowledged(i) = false for each i
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Sliding Window receiver action refinement

Receive&Ack is not followed any more by IncreaseRound

in case of no Match the currMsg with syncBit(currMmsg) > high
cannot be Consumed: the receiver must first SlideWindow to let
currMsg Match

SlideWindow = let (s = syncBit(currMsg)) in
high := s
low := max{1, s −maxWinSize + 1}

NB. When receiving a new file with FullWindow , the ack for low
must have been received by the sender so that lowreceiver can be
shifted to the right.

ReSendAck = Send(low, to sender )

NB. Finitely many indices suffice using +1 mod r for updating low , high
for a sufficiently large r depending on maxWinSize if there is no msgt
overtaking: a pure data refinement.
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Petri net redesign: Sliding Window with bounded indices
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Correctness of SlidingWindows runs

is easily proved by induction on SlidingWindows run phases:

(we found no proof for this refinement in op.cit.)
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Mutual Exclusion problem (Lynch 10.2, 10.4)

Problem: allocate one nonshareable resource among n processes

Algorithmic idea: each process from its remainder region (R)

moves into a trying region (T) to gain access to the critical region (C)

when the resource is not needed any more executes an exit protocol in
its exit region (E)

R −→ T −→ C −→ E −→ R

Lockout-Freedom Requirement:

If each process always returns the resource, every process that reaches
the trying region eventually will enter the critical region

Every process that reaches its exit region eventually will reenter its
remainder region
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Peterson’s Mutex algorithm (Peterson 1981, Lynch 10.5)

Process = {1, . . . , n}, each with

– for each local iterator variable level ∈ {0, . . . , n − 1} (initially
level = 1) a global shared loc

• stickAt(level) ∈ {1, . . . , n} readable/writable by all processes

with arbitrary initial value

• p before getting the resource must Fetch stickAt(level)

• later release it (by being Fetched by another interested process)
in case there is another interested process

– local shared loc flag ∈ {o, . . . , n − 1} at each process, initially
flag = 0, writable by process p and readable by all other processes

• flagp = l > 0 indicating that p has started the competition (‘is
interested’) at level l to get the resource

We first explain the case n = 2 with fixed competition level = 1.
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From English to 4-phase MutexPeterson2

Re/SetFlag = (flag := 0/level)

FetchStick = // for n = 2, one more guard below for n > 2

if (not HasSticklevel ) then stickAtlevel := self

-- NB. This means skip if HasSticklevel

where HasSticklevel iff stickAtlevel = self

Winner = NobodyElseInterested or

MeantimeSomebodyElseFetchedStick
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Actions and Predicates for MutexPeterson2

NobodyElseInterested(level) = forall p 6= self flagp < level

-- for case n= 2 this means flagtheOtherProcess = 0

where theOtherProcess =

 1 if self = 2

2 else
// only for case n = 2

MeantimeSomebodyElseFetchedStick (level) iff stickAtlevel 6= self

-- meaning in case n = 2 that stickAtlevel = theOtherProcess
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Petri net for Peterson’s Mutex algorithm

Petri net idiosyncrasy: Simulation of shared locations by token
manipulation multiplies places and transitions (8+12 for 3 locs)
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Simulation of shared locations multiplies places/transitions

Petri net idiosyncrasy: PN for MutexPeterson2 introduces

8 places and 12 transitions for 3 locs

stickAt reads/writes simulated by pendil , pendir , atl , atr (i = 1, 2)

– 2 token swapping transitions which simulate the 2 possible writes

– 4 token checking read (‘simultaneous delete/add token’) transitions

multiple-reader single-writer flags encoded by places
finishedl , finishedr with

– a reader transition to simulate reading the writer’s flag value

– for the writer for each possible update value one transition

• here two transitions encoded as delete resp. add token transitions
at place finished of each writer process

Celebrated Petri net visualization risks to result in spaghetti diagrams

in presence of shared locs involving > 2 processes or > 2 loc vals
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Proving mutual exclusion, progress and lockout-freedom

Compare detailed, easy-to-understand proof in Lynch 281-282 with Petri
net verification using ‘evolution proof graph’ whose 16 ‘nodes ... are
justified’ one by one with help of 4 invariants (Reisig p.180-182).

Natural design/proof extensions from 2 to n > 2 processes (see Lynch
10.5.2 and 10.5.3) risk to explode with Petri net proof graphs.
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Generalization to MutexPetersonn for n > 2

Algorithmic idea: iterate MutexPeterson2 competition through
levels 1 to n − 1 s.t.

for each level value there is a least one loser

– a process that has to waitToWin until NobodyElseInterested

so that at level k at most n − k processes can win

– and therefore at most one can win at level n − 1

Main refinement: add iterator component and a further guard for
FetchStick guaranteeing that

in each step at most one process p can write stickAt

chosenWriterFor (stickAtlevel ) = self

where chosenWriterFor (stickAt(l)) =

select({p | flagp = l and modep = getStick

and stickAt(l) 6= p})
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MutexPetersonn for n > 2

CompetitionFinished iff level = n − 1

Increase(level) = (level := level + 1)

Reset(level) = (level := 1)
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ASMs enhance Petri net expressivity, e.g. by choose/forall

Goal: generate (over alphabet A, say starting with empty vw = Λ) the
pairs vw ∈ A∗ of different words v 6= w of same length |v | = |w |

WordPairGenerator(A) =

choose n, i ∈ Nat with i < n -- at least one position

choose a, b ∈ A with a 6= b -- with different values

v (i) := a

w (i) := b

forall j < n, j 6= i -- in every other position

choose a, b ∈ A -- whatever value

v (j ) := a

w (j ) := b

Correctness Lemma. The set of states reachable (from vw = Λ) by
whatever possible choice is {vw ∈ A∗ | v 6= w and |v | = |w |}.
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Petri net to generate one word pair (courtesy W. Reisig)

How much it takes to explain/prove that this net simulates one step of
the above ASM (where const v ,w ; var a, b ∈ Σ; var n, i , j : Nat)?
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Add iteration to generate all word pairs (courtesy W. Reisig)

Measure the effort to define/explain this Petri net and formulate/prove
the Correctness Lemma for it (where var a, b, x1, ..., xn , y1, ..., yn : Σ)!
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Explaining the Petri net encoding of word pair generation

Idea: transition q produces at B one mark for a 6= b, at C n − 1 marks
for other letters. To iterate store n and after completion delete vw .
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Conclusion: three major sources of PN inadequacy

insufficient abstraction and introduction of irrelevant technicalities

– implementation details resulting from low-level token-based view

ASM states can be tailored to any level of abstraction.

lack of component structure to separate different concerns

– mainly due to global overall process view

Main program of an ASM can call any components.

complexity of graphical layout indicating

– a too great esteem of the graphical ‘nature’ of PNs as a help to
understand/define them

– lack of appropriate combination of visual/textual description
elements (control versus data)

Control state ASMs integrate flowchart representation of control flow
with component structure and (textual definition of) data flow

– including dynamic set of agents with changeable program/context
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