
Egon Börger (Pisa) & Alexander Raschke (Ulm)

The Abstract State Machines Method

for Modeling and Analysis of Software-Based Systems

An introductory survey of main concepts and characteristic results1

Università di Pisa, Dipartimento di Informatica, boerger@di.unipi.it
Universität Ulm, Abteilung Informatik, alexander.raschke@uni-ulm.de

1 Figures are c© 2001,2003 Springer-Verlag Berlin Heidelberg, reused with permission

Copyright CC BY–NC-SA 4.0 1

What the ASM method is about

PROBLEM: still frequently experienced mismatch between

human understanding and formulation of real-world problems

– by domain experts and system designers

and deployment of problem solutions by code-executing machines

– on changing platforms

To bridge the gap bw those two ends of system development

the ASM method provides a practicable, mathematically well-founded
systems engineering framework for

– the construction of reliable computer-based systems

– their reliable use

– their cost-effective change management

which are objectively and effectively controllable (certifiable)

Copyright CC BY–NC-SA 4.0 2

Wide-spectrum method vs special-purpose technique

Consequently the ASM method

is NOT a special-purpose technique

– like static analysis, bytecode verification, model checking, theorem
proving, run-time verification, etc., which draw their success from
being tailored to particular types of problems at specific (usually
technically detailed if not code) levels of abstraction

in particular is NOT a ‘formal’ method

but is a wide-spectrum method

– assisting system engineers in every aspect and at any level of
abstraction of an effectively controllable construction of reliable
computer-based systems

Nevertheless the ASM method

allows one to integrate special-purpose sw engg techniques

can be tailored to application domain languages

Copyright CC BY–NC-SA 4.0 3

The gap: how to match requirements and code?

Requirement docus: descriptions of real-world problems/activities

– written by domain experts for system designers who typically are not
knowledgeable in the application domain

– in natural lg, interspersed with diagrams, tables, formulae, etc.

– frequently suffer from incompleteness (implicit assumptions), lack of
precision (ambiguity) or inconsistency

Compilable programs: software representations of solutions

– written for mechanical elaboration by machines coming with
technically detailed precision, completeness, consistency

——————————THE PROBLEM:——————————

How can (informal) requs & (formal) code (written to satisfy the
requs) be linked to certifiably guarantee that the code does what the
requs describe and not something else?

How can the link bw requirements and their implementation be reliably
preserved during maintenance (design for change)?

Copyright CC BY–NC-SA 4.0 4

What the ASM method offers to ‘bridge the gap’

a precise general language with a validation/verification framework

– practicing domain experts & system designers can use in daily work

to formulate, justify, document prior to implementing

accurate models of real-world problems

to solve the ground model problem

a rigorous general design and verification method

– practicing system designers and implementers can incorporate into
their development environment

to successively/incrementally detail, controllably correct and traceably,
hierarchies of model abstractions

refining ground models to running system behavior models

to solve the verified software problem

(called also certifiable implementation or refinement problem)

Copyright CC BY–NC-SA 4.0 5

Characteristics of the ASM Method

Supports, within a single precise yet simple conceptual framework , and
uniformly integrates the following activities/techniques:

the major software life cycle activities, linking in a controllable
way the two ends of the development of complex software systems:

– requirements capture by constructing rigorous ground models

– architectural and component design bridging the gap between
specification and code by piecemeal, systematically documented
detailing via stepwise refinement of models to code

– documentation for inspection, reuse, maintenance (change
management) providing, via intermediate models and their analysis,
explicit descriptions of software structure and major design decisions

the principal modeling and analysis techniques

– dynamic (operational) and static (declarative) descriptions

– validation (simulation) and verification (proof) methods at any
desired level of detail

Copyright CC BY–NC-SA 4.0 6

The three fundamental constituents of the ASM method

1. ASMs: an FSM-extension to let communicating agents compute
concurrently over ‘most general’ states (Tarski structures)

2. ASM ground models: accurate description of requirements

– at application-domain-determined abstraction level

– expressed using rigorous natural lg ‘templates’ (ASMs)

– providing authoritative reference for system lifecycle activities

– evaluatable via analysis— testing/inspection(reasoning)/review
process—to certify consistency, correctness, completeness properties

supporting precise, documented & inspectable high-level design

3. ASM refinements: linking series of detailed design/coding decisions
in an organic & effectively maintainable chain of rigorous, coherent
system models leading to code

– refinement links must guarantee that ground model system
properties are preserved via series of design decisions —and
document this for maintenance (reuse and change management)

Copyright CC BY–NC-SA 4.0 7

How ASMs describe behavior (of ground/design models)

ASMs describe when and how to change a state yielding the next state

state given at whatever level of abstraction (requs/design/implemtn)

– sets of whatever objects with predicates/operations defined on them

state change by local actions which update some state components
directly, at that level of abstraction, without extraneous encoding

ASMs use only the fundamental if ... then −− template of commands
(also of reasoning) in natural and scientific language (called rules):

if GivenSituation then PerformAction -- Draw Conclusion

GivenSituation describes any trigger/event/stateProperty that guards
the execution of the action // resp. implies the Conclusion

PerformAction consists of finitely many data changes f := exp
which update (the value of) object f to (the value of) exp

– Objects may be parameterized as f (e) or f (e1, . . . , en) with arbitray
expressions e, ei

Copyright CC BY–NC-SA 4.0 8

ad 1. Notion of Finite State Machine

FSM = -- this is an interpreter scheme

if Defined(in) then -- do in parallel!

ctl state := δ(ctl state, in) -- static function δ

out := λ(ctl state, in) -- static function λ

FSMs come with four characteristic restrictions:

only three locations, all 0-ary (variables without parameters):

– in: monitored (only read by FSM, but written by environment)

– ctl state: controlled (read and written by FSM)

– out : output (only written by FSM, but read by environment)

only three special data types: finite sets of

– input/output symbols (letters of an alphabet)

– control states (labels/integers) representing bounded memory

only two auxiliary (furthermore static) functions δ, λ

strict separation of input (read) and output (write) locations

Copyright CC BY–NC-SA 4.0 9

ASMs generalize FSM states, permitting:

to read and update in each step simultaneously (synch. parallelism)

– arbitrarily many – possibly parameterized – locations

•memory locations (l,val(params)) of array variables l(params)

– location values of arbitrary type

to have arbitrary conditions as rule guard (not only input definedness)

to have (not 2 but) arbitrarily many simultaneously executed updates

to provide env with whatever needed auxiliary functions

This leads to the definition: ASM = finite set of instructions (‘rules’)

if Cond then Updates

Updates : set of (simultaneous) assignments f (t1, . . . , tn) := t

Cond , t1, . . . , tn , t : arbitrary exps (‘formulae/terms’)

Top-level, visualizable FSM ctl state/phase/mode structure yields
hierarchical system decomposition means into components
Copyright CC BY–NC-SA 4.0 10

Generalized classification of locations/functions

controlled out

derived

(monitored)
in

(interaction)

static

shared

dynamic

basic

function/relation/location

supporting the separation of concerns: information hiding, data
abstraction, modularization and stepwise refinement

Copyright CC BY–NC-SA 4.0 11

Structuring abstract state memory into function tables

For each array variable l and each occuring length m of parameters of l :

group the subset of its locations (l , (a1, . . . , am)) of length m

i.e. location name and values arg of parameter sequences of length n

This yields a table representation of those memory locations:

l (l , arg1) . . . (l , argm)

Associate a value l(arg) to each table entry (l , arg)

This yields a function table, i.e. a table which defines an n-ary function
l , where l(arg) represents for the given argument the uniquely
determined value which is currently contained in location (l , arg):

l l(arg1) . . . l(argm)

For simple variables (case n = 0) we write l

Copyright CC BY–NC-SA 4.0 12

Example: Table representation of FSMs (states & pgm)

Fsm(in, out , δ, λ) =

 ctl state := δ(ctl state, in)

out := λ(ctl state, in)

ctl state

in

out

ctl state/in a1 . . . am

1 δ(1, a1) . . . δ(1, am)

.

n δ(n, a1) . . . δ(n, am)

Similarly for the λ function in instructions (i , a, b, j).

This representations permits to exploit sophisticated table manipulation
and documentation techniques (Parnas).

Copyright CC BY–NC-SA 4.0 13

ASM states are Tarski structures

Via the structuring of ASM memory locations one can view an

ASM state as a set of function tables

ASM step as changing some values in some of these tables

ASM = FSM operating over function tables

——————————————————————————

In logic a function table for a function with name l is called an
interpretation of function symbol l . Treating predicates by their
characteristic functions yields:

Tarski structure = a set of tables
ASM = FSM operating over Tarski structures

NB. Structures of only functions are also called algebras.

Copyright CC BY–NC-SA 4.0 14

The encompassing character of ASM states

ASM locations are not flat:

their values can be structured complex objects of any type: records,
documents, files, folders, images, sounds, movies, Web pages,...

permit uniform combination of control, communication, data, resources

In fact Tarski structures represent a most general notion of structure

the structures of mathematics are Tarski structures

the models of abstract data types are Tarski structures

classes (class instances) of oo pgg lgs are Tarski structures

states of Virtual Machines are Tarski structures

. . .

Copyright CC BY–NC-SA 4.0 15

Important subclass of ASMs: Control State ASMs

Control State ASM = ASM all of whose rules have the form

if ctl state = i and cond then
rule

ctl state := j

n

cond 1

cond nrule

1rule

i

j

jn

1

control-states i , j , . . . represent an overall system status (mode, phase),
which allows the designer to

structure the set of states into subsets

– visualize this overall structure

refine control-state transitions by control-state submachines (modules)

– sequentializing (overall parallel) control where needed

Copyright CC BY–NC-SA 4.0 16

Control State ASMs rigorously capture UML activity dgms

UML event driven activity diagram scheme:

– If a certain event (situation) takes place, perform an action and
proceed

control-state ASMs provide a general, mathematically rigorous,
abstract meaning of:

– situation: configuration of whatever items/data (abstract state)
rigorously expressed by rule guarding cond itions

– action: change of the configuration of some items (state
transition/update) rigorously expressed by ASM transition rules

– proceed : rigorously expressed by ctl state update

NB. Each (synchronous) UML activity diagram can be built from
alternating branching and action nodes of the control-state ASM
diagram form (for each of the synchronized agents)

See the ASM-based framework built at U of Ulm for rigorous UML
diagrams (Saarstedt, Guttmann, Raschke et al.)
Copyright CC BY–NC-SA 4.0 17

Notation for non-determinism and parallelism

selection functions (describing non-determinism) supported by
dedicated notation for rule(select {x : ϕ(x)}):
choose x with ϕ in rule

to execute rule for one element x , which is arbitrarily chosen among
those satisfying the selection criterion ϕ

symmetric notation to enhance synchronous parallelism:

forall x with ϕ do rule

to execute rule simultaneously for every element x satisfying ϕ

Allow for standard notations, e.g. let x = t in M .

The parallel ASM execution model

easens specification of macro steps (by modularization and refinement)

avoids unnecessary sequentialization of independent actions

easens parallel/distributed implementations

Copyright CC BY–NC-SA 4.0 18

Role of abstraction, parallelism, operational character

abstraction enables to

– represent whatever objects of discourse DIRECTLY, as is

• focussing on their application-specific properties and operations

• controlling encoding of data structures by dedicated refinements

– compose systems out of components with precise interfaces

– reuse models to capture requirements changes

parallelism makes independence of actions explicit

– abstracting from behaviorally irrelevant sequentialization

– easens specification of macro steps (modularization/refinement)

– supports distributed implementations & performance optimization by
multi-threading

operational character provides executability of models

– both conceptual (for analysis) and mechanical (for experiments,
testing and monitoring system behavior)

Copyright CC BY–NC-SA 4.0 19

From seq in/out-focus to communication & concurrency

Replace sequential runs

of stepwise sync in/output interaction of a single FSM with its env

by concurrent runs of multiple a ∈ Agent with pgm ASMa

components are event-triggered & discrete (env can be continuous)

Agent and program assignment ASMa are dynamic

– e.g. add/delete agents and/or modify their programs to model
dynamic networks with changing nodes or node functionality

components interact asynchronously using communication

– at a priori unpredictable moments (there is no global clock)

– for a priori unpredictable reasons (interrupts, service requests, etc.)

– state comprises in/out-mailbox actions Send,Receive

– actions of communication medium separated from internal actions

or synchronously via shared functions. See Boerger/Schewe in
https://link.springer.com/journal/236/53/5

Copyright CC BY–NC-SA 4.0 20

https://link.springer.com/journal/236/53/5

Exl for dynamic agent creation/deletion in ASMs

When Agent and program association to agents are dynamic, ASM rules
may add/delete agents and/or modify their programs

Exl from a Web Apps Infrastructure model:

StartBrowsingContext(r) = -- r a service request ID
let a, b =new Agent in

program(a) := Renderer(r)
-- yields user interface of DOM

program(b) := EventLoop(r) -- executes browser events
DOM (r) := initialDOM
agents(r) := {a, b}

NB. agents a, b are deleted when the browsing context is stopped

Copyright CC BY–NC-SA 4.0 21

ad 2. What are ground models?

Accurate blueprints of the to-be-implemented piece of real world
—called ‘golden models’ in the semiconductor industry—which

define ‘the conceptual construct/the essence’ of the software system
(Brooks) prior to coding, abstractly and rigorously

– at an application-problem-determined level of detailing (minimality)

– formulated in application domain terms (precision, informal accuracy)

– authoritatively for the further development activities: design
contract/process/evaluation and maintenance (simplicity)

ground the design in reality by justifying the definition as

– correct: model elements reliably convey original intentions

– complete: every semantically relevant feature is present (env,arch,
domain knowledge), no gap in understanding of ‘what to build’

– consistent: conflicting objectives in requirements resolved

NB. Poor requirements are number one cause of project failures!

Copyright CC BY–NC-SA 4.0 22

Ground model justification must solve three problems

Communication (language) problem: mediate between

– sw designers, domain experts and customers for common
understanding prior to coding of ‘precisely what to build’

– problem domain and world of models, requiring

• capability to calibrate degree of model precision to the problem

• general data and operation framework and general interface
concept (to represent system environments)

Evidence problem: no infinite regress

– no math. transition from informal to precise descriptions, BUT

– inspection can provide evidence of direct correspondence bw ground
model and reality the model has to capture (completeness,
correctness, empirical interpretation of extra-logical terms)

– domain-specific reasoning can check consistency issues

Validation problem: need for repeatable experiments to validate
(falsify) model behaviour (runtime verification and analysis, testing)

Copyright CC BY–NC-SA 4.0 23

Variety of real-life ASM ground models (1)

industrial standards: ground models for the standards of

– AODV routing protocol (2018)

– OMG for BPMN 2.0: Kossak et al.(Springer book 2014)

– OASIS for BPEL: Farahbod et al. ASM’04 and IJBPMI 1 (2006)

– ECMA for C#: Börger, Fruja, Gervasi, Stärk: TCS 336 (2006)

– ITU-T for SDL-2000: Glässer, Prinz et al. 1998–2003

– IEEE for VHDL93: Müller, Glässer, Börger:1994–1995

– ISO for Prolog: Börger, Rosenzweig: 1991–1995

design, reengineering, testing of industrial systems:

– railway & mobile telephony network component sw (at Siemens)

– fire detection system sw (in German coal mines)

– implementation of behavioral interface specifications on the .NET
platform and conformence test of COM components (at Microsoft)

– business systems interacting with intelligent devices (at SAP)

Copyright CC BY–NC-SA 4.0 24

Variety of ASM ground models and their refinements (2)

programming lgs: semantics/implementation of major pgg lgs, e.g.

– Prolog (Quintus), SystemC, Java/JVM including bytecode verifier
(SUN), C# (Microsoft)

– domain-specific languages (UBS Switzerland)

with KIV/PVS verification of compilers/compiler back-ends (DFG)

architectural design: verification of pipelining schemes & VHDL-based
hw design (Siemens), architecture/compiler co-exploration

protocols: for authentication, cryptography, cache-coherence,
routing-layers for mobile ad hoc networks, group-membership, etc.

modeling e-commerce, workflows, business processes, web services,
web apps infrastructure (at SAP and Metasonic)

memory systems (Java, Cassandra)

Copyright CC BY–NC-SA 4.0 25

6 fundamental questions for building ground models

The ASM method suggests to ask the following 6 questions when
building a ground model as ‘models of the system’s intended behaviour’

called golden model in the International Technology Roadmap for
Semiconductors (2005)

1. Who are the system agents and what are their relations? What is the
relation between the system and its environment?

2. What are the system states?

What are the domains of objects and what are the functions,
predicates and relations defined on them? (object-oriented approach to
system design)

What are the static and the dynamic parts (including input/output) of
states?

Copyright CC BY–NC-SA 4.0 26

6 fundamental questions for building ground models (Cont’d)

3. How and by which transitions do system states evolve?

Under which conditions (guards) do the state transitions (actions) of
single agents happen and what is their effect on the state?

What is supposed to happen if those conditions are not satisfied?
Which forms of erroneous use are to be foreseen and which exception
handling mechanisms should be installed to catch them? What are the
desired robustness features?

How are the transitions of different agents related? How are the
internal actions of agents related to external actions of the
environment?

Copyright CC BY–NC-SA 4.0 27

6 fundamental questions for building ground models (Cont’d)

4. What is the initialization of the system and who provides it? Are
there termination conditions and, if yes, how are they determined? What
is the relation between initialization/termination and input/output?

5. Is the system description complete and consistent?

6. What are the system assumptions and what are the desired system
properties?

At the level of transitions this question can be formulated and dealt
with in terms of pre-/postconditions (assume/guarantee scheme)

Copyright CC BY–NC-SA 4.0 28

ad 3. ASM Refinement for Management of Design Decisions

Refinement is a general methodological principle:

piecemeal de-/composition of a system into/from constituent parts
which are treated separately and combined to manage complexity

goes together with the inverse process of abstraction

ASM refinements exploit the availability in ASMs of arbitrary structures
to directly reflect states/operations to

support divide-and-conquer techniques for system design and analysis

– without privileging one to the detriment of the other

allow the designer to tailor refinement/abstraction pairs which

– faithfully reflect a design decision or reengineering idea

– provide means to justify an implementation as ‘correct’

• linking—thru various levels of abstraction—the system architect’s
view (blueprint) to the developer’s view (implementation)

– support design communication, design reuse and system
maintenance thru accurate, precise, indexed and searchable docu

Copyright CC BY–NC-SA 4.0 29

ASM refinements offer freedom to choose notions of:

abstract/refined state

states of interest and correspondence bw pairs (S , S∗) of
abstract/refined states of interest

abstract/refined computation segments of m/n single abstract/refined
steps τi/σj leading from/to corresponding states of interest

locations of interest and corresponding abstract/refined locs of interest

equivalence of values in corresponding locations of interest

σ1 · · · σn︸ ︷︷ ︸
n steps of M ∗

-State S∗ S∗′

6

?

≡
6

?

≡

-State S S ′

m steps of M︷ ︸︸ ︷
τ1 · · · τm

Copyright CC BY–NC-SA 4.0 30

Main usages of ASM refinements

capture orthogonalities by modular (maintainable) components

– separate orthogonal design decisions, relate different system aspects

construct hierarchical levels (cost-effective system maintenance) for

– horizontal piecemeal extensions and adaptations (design for change)

• e.g. of ISO Prolog model by constraints (Prolog III), polymorphism
(Protos-L), narrowing (Babel), o-orientation (Müller), parallelism
(Parlog, Concurrent Prolog), abstract execution strategy (Gödel)

– (provably correct) vertical stepwise detailing of models (design for
reuse) to their implementation, e.g. model chains leading from

• Prolog to WAM (13 levels), Occam to Transputer (15 levels), Java
to JVM (5 horizontal, 4 vertical levels), C# to CLR

reuse justifications (proofs/run experiments) for system properties

– e.g. reusing Prolog-to-WAM compiler correctness proof for IBM’s
CLP(R)-to-CLAM, Protos-L-to-PAM, Java to C#, etc.

Copyright CC BY–NC-SA 4.0 31

Java2JVM exl for horizontal/vertical ASM refinements

JVMI

C

T

E

O

Java I

C

E

T

O

imperative

static class features
(procedures)

exception
handling

concurrent
threads

oo features

compile

compile

compileO

compile

compileC

I

E

T

Java

Java

Java

Java

JVM

JVM

JVM

JVM

horizontal (incremental) refinement of components (conservative
extensions) supports componentwise design, validation, verification

vertical refinement from spec to implementation: Java →compile JVM
via horizontally refined compile with appropriate parameterization

Copyright CC BY–NC-SA 4.0 32

Mechanical Verification Technology Transfer Challenge

Starting from the structured and high-level ASM definition of Java and
of its implementation on the Java Virtual Machine

Verify : Theorem. Under explicitly stated conditions, any well-formed and
well-typed Java program:

upon correct compilation

passes the verifier

is executed on the JVM

– without violating any run-time checks

– correctly wrt Java source pgm semantics

in a way that can be applied by language developers, e.g. reused for
language extensions: C#, . . .

integrating verification into feature-based devpmt of sw product lines

see Batory/Börger in J.UCS 14.12 (2008) http://www.jucs.org/
jucs_14_12/modularizing_theorems_for_software

Copyright CC BY–NC-SA 4.0 33

http://www.jucs.org/jucs_14_12/modularizing_theorems_for_software
http://www.jucs.org/jucs_14_12/modularizing_theorems_for_software

Machine verified ASMs suggest feasability

Examples:

Prolog2WAM compiler correctness theorem (Börger/Rosenzweig 1995)
verified in KIV (Schellhorn/Ahrendt J.UCS 3.4 (1997) http://www.
jucs.org/jucs_3_4/reasoning_about_abstract_state)

First full mechanical verification of Mondex electronic purse using KIV
(Schellhorn et al. LNCS 4085 etc.)

– extended to include treatment of security issues and coding of the
protocol (in Java)

AsmTP verification of thread handling properties for C# interpreter
model (Stärk in TCS 343, 2005)

Copyright CC BY–NC-SA 4.0 34

http://www.jucs.org/jucs_3_4/reasoning_about_abstract_state
http://www.jucs.org/jucs_3_4/reasoning_about_abstract_state

Simple refinement exl: refining FSM to 2-Way FSM

The input location is extended to a tape where the input reader can

Move its current head Position // by instructions (i , a, b,m, j)

read the current input location in(head).

TwoWayFsm(in, out , δ, λ,Move, head) =

Fsm(in(head), out , δ, λ) // parameterize locn in by head

head := head+Move(ctl state, in(head)) //add new rule

Correspondingly we extend the table representation of FSMs:

ctl state

head

in(head)

out

ctl state/in a1 . . . am

1 Move(1, a1) . . . Move(1, am)

.

n Move(n, a1) . . . Move(n, am)

Copyright CC BY–NC-SA 4.0 35

Exl: refining 2-Way FSM to (Interactive) Turing Machine

TwoWayFsm(in, out , δ, λ,Move, head) =

Fsm(in(head), out , δ, λ)

head := head + Move(ctl state, in(head))

——————————————————————————————
Merge read and write locations on a unique tape: in=out

TM(tape, δ, λ,Move, head) =

TwoWayFsm(tape, tape(head), δ, λ,Move, head)

Dynamic state reduced to . . . i a . . . tape ctl state head

InteractiveTM(input , . . .) =

-- data refine δ, λMove by monitored param input

TM(tape, δinput , λinput ,Moveinput , head)

Output(input , ctl state, tape(head)) -- add external output rule

Copyright CC BY–NC-SA 4.0 36

ASM characteristics: a coherent divide-and-conquer approach

capture orthogonalities by modular (maintainable) components

– separate multiple concerns, concepts and techniques

– choose for each task appropriate engineering methods

• at the level of abstraction and precision where the task occurs

construct hierarchical levels for

– horizontal piecemeal extensions and adaptations (design for change)

– vertical stepwise detailing of models (design for reuse) to their
implementation in a provably correct way

combine design and analysis in a consistent way, integrating

– mathematical verification by a variety of reasoning techniques

– experimental validation of system behaviour through simulation
(model-checking, run-time verification, testing) of rigorous models

reuse justifications (proofs) for system properties, e.g. Batory/Börger
http://www.jucs.org/jucs_14_12/modularizing_theorems_

for_software

Copyright CC BY–NC-SA 4.0 37

http://www.jucs.org/jucs_14_12/modularizing_theorems_for_software
http://www.jucs.org/jucs_14_12/modularizing_theorems_for_software

ASM Analysis Techniques (Validation and Verification)

Practitioner supported to analyze ASM models by reasoning and
experimentation at the appropriate degree of detail, separating

orthogonal design decisions and complementary methods: abstract
operational vs declarative/functional/axiomatic, state- vs event-based

design from analysis (definition from proof)

validation (by simulation) from verification (by reasoning)

– e.g. ASM Workbench (ML-based, DelCastillo 2000), AsmGofer
(Gofer-based, Schmid 1999), XASM (C-based, Anlauff 2001), AsmL
(.NET-based, MSR 2001), CoreASM (since 2005)
https://github.com/CoreASM, Asmeta (Milan/Bergamo)

verification levels (degrees of detail)

– reasoning for human inspection (design justification)

– rule based reasoning systems (e.g. Stärk’s Logic for ASMs)

– interactive proof systems, e.g. KIV, PVS, Isabelle, AsmPTP

– automatic tools: model checkers, automatic theorem provers

Copyright CC BY–NC-SA 4.0 38

https://github.com/CoreASM

Models and methods in an ASM-based development process

TEST
CASES

domains
transition system

stepwise
refinement
reflecting
design

dynamic functions
external functions

decisions

manual

mechanized

PROVER

adding assumptionsadding definitions

SIMULATOR

using data from
application domain

Verification

Application Domain Knowledge

Ground Model

Informal Requirements

Code

Validation

+

Copyright CC BY–NC-SA 4.0 39

References: 3 books

R. Stärk, J. Schmid, E. Börger: Java and the Java Virtual Machine.
Definition, Verification, Validation. Springer 2001

http://www.di.unipi.it/ boerger

E. Börger and R. F. Stärk: Abstract State Machines. Springer 2003

http://www.di.unipi.it/ boerger

E. Börger and A. Raschke: Modeling Companion for Software
Practitioners. Springer 2018

http://modelingbook.informatik.uni-ulm.de

Copyright CC BY–NC-SA 4.0 40

http://modelingbook.informatik.uni-ulm.de

References: Ground Model and Refinement Concepts

E. Börger: The ASM Refinement Method .

Formal Aspects of Computing 15 (2003), 237-257

See also ASM refinement analysis papers by G. Schellhorn in J.UCS
2001, TCS 2005, J.UCS 2008, ENTCS 2008, SCP 2011

E. Börger: Construction and Analysis of Ground Models and their
Refinements as a Foundation for Validating Computer Based Systems.

Formal Aspects of Computing J. 19 (2007), 225-241

See also Sect.2 of E. Börger: Why Programming Must Be Supported by
Modeling and How.

Proc. ISoLA 2018, Springer LNCS 11244, pg.89–110

For the other sources mentioned in the slides one can find exact
references in the three books quoted above.

Copyright CC BY–NC-SA 4.0 41

Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the original authors are mentioned

modified slides are made available under the same licence

the (re-) use is not commercial

Copyright CC BY–NC-SA 4.0 42

