
Egon Börger (Pisa) & Alexander Raschke (Ulm)

Modeling AODV

(Ad hoc On-Demand Distance Vector Routing Protocol)

Università di Pisa, Dipartimento di Informatica boerger@di.unipi.it
Universität Ulm, Abteilung Informatik alexander.raschke@uni-ulm.de

See Ch. 6.1 of ModelingCompanion
Copyright CC BY–NC-SA 4.0 1



Why is a rigorous AODV model needed?

C.E.Perkins/E.M.Belding-Royer/S.R.Das: AODV RFC 3561 de facto
standard docu of 2003 is partly ambiguous, incomplete, contradictory

– various implementations show different behavior on protocol relevant
features (e.g. loops, route discovery, packet delivery, optimal routes)

• a huge number of different interpretations of RFC 3561 are possible

widely believed, performance relevant loop freedom claim (by Perkins
and Royer in 1999) established only in 2013 for a ‘correct’
interpretation of AODV

– in: A. Fehnker, R. van Glabbeek, P. Höfner, A. McIver, M. Portmann,
W.L. Tan: A process algebra for wireless mesh networks used for
modelling, verifying and analysing AODV (TR 5513, NICTA, 2013)

– after some wrong/partial proofs in the literature

TR 5513 identifies also some performance relevant shortcomings of
AODV and five key implementations

Copyright CC BY–NC-SA 4.0 2



Goal of this lecture

explain the functional core behavior of AODV for users and
programmers, ‘from scratch’ and reliably, by stepwise developing an
Abstract State Machine (ASM) model

– reflecting a correct and complete understanding of the (core)
requirements in the de facto standard document RFC 3561

• but informed by the professional analysis in the NICTA TR 5513

as a prerequisite for a rigorous high-level analysis, long before coding

performed in the NICTA TR 5513, in process algebraic terms, for
different interpretations and implementations of the RFC 3561 wrt

– loop freedom

– route discovery

– packet delivery

and related correctness and performance relevant issues

Copyright CC BY–NC-SA 4.0 3



Mobile Ad hoc Network (MANET) routing protocols

In MANETs every network agent

can move independently to change its position

can (try to) send messages to every ‘directly connected’ network node
it knows (’neighbor’)

can (try to) broadcast messages to all its ‘neighbors’

for (wireless) communication with any other network agent must ask a
routing protocol to indicate a communication path to that destination

The routing protocol

receives and elaborates route request messages, by forwarding them
and generating reply messages once a route has been found

receives and elaborates route reply messages by forwarding them back
to the original requestor

creates and propagates route error messages if some broken direct link
is detected

Copyright CC BY–NC-SA 4.0 4



Background and agent/protocol interaction structure

Background structure:

network: graph (Agent ,Link ) with dynamic sets of nodes and edges

determines for each a ∈ Agent a dynamic set neighb(a)

Agent/protocol interaction: when a WantsToCommunicateWith d

in case a KnowsActiveRouteTo(d), it can right away
StartCommunicationWith(d), without entering
WaitingForRouteTo(d) (which is initialized by false)

otherwise it must GenerateRouteReq(d) and becomes
WaitingForRouteTo(d) until via the protocol run it eventually
KnowsActiveRouteTo(d)

to GenerateRouteReq(d) only once per required communication,
it is called only when a is not already WaitingForRouteTo(d)

– easily refinable to permit repeated route requests to a same d

Copyright CC BY–NC-SA 4.0 5



Agent/protocol interaction component

PrepareComm =

if WantsToCommunicateWith(destination) then

if KnowsActiveRouteTo(destination)

then

StartCommunicationWith(destination)

WantsToCommunicateWith(destination) := false

WaitingForRouteTo(destination) := false

else

if not WaitingForRouteTo(destination) then

GenerateRouteReq(destination)

WaitingForRouteTo(destination) := true

NB. WantsToCommunicateWith is assumed to be set to true only by
the application program and to false only by PrepareComm.
Copyright CC BY–NC-SA 4.0 6



Router components and Aodv program structure

The main Aodv program each node is equipped with:

AodvSpec = one of -- main program

PrepareComm

Router

The Router consists of components to process request, reply and error
msgs:

Router = one of

ProcessRouteReq

ProcessRouteRep

ProcessRouteErr

ProcessRouteErr = one of

GenerateRouteErr

PropagateRouteErr

Copyright CC BY–NC-SA 4.0 7



Aodv data structure: route table RT (a) information

Each route table entry keeps agent a’s knowledge that

the destination dest(entry) of the entry may be reachable

in the direction as indicated by a neighbor node nextHop(entry)

on a path of length hopCount(entry) (distance to the destination)

which can be considered as Active (without LinkBreak)

To avoid loops in communication paths, each agent keeps a local
request/-level counter:

localReqCount(a) and curSeqNum(a), both initialized by 0

curSeqNum(a) possibly incremented when a receives a new request to
reach a, after a LinkBreak which made an Active path to a InActive

Each route table entry for d = dest(entry) also records

as destSeqNum(entry) the last known value of curSeqNum(d)

by known(entry) ∈ {true, false} whether this number is valid

NB. For precursor (entry) info for route error handling see below

Copyright CC BY–NC-SA 4.0 8



Aodv data structure: route table entry attributes

entryFor (d ,RT ) = entry if forsome entry ∈ RT dest(entry) = d

undef else

KnowsActiveRouteTo(destination) iff

Active(entryFor (destination,RT ))

lastKnownDestSeqNum(d ,RT ) = destSeqNum(entry) if forsome entry ∈ RT dest(entry) = d

unknown else

ValidDestSeqNum(entry) iff known(entry) = true

Copyright CC BY–NC-SA 4.0 9



Aodv data structure: RouteRequest

Each route request msg rreq ∈ RouteRequest , when generated, records
information about:

the request destination dest(rreq) ∈ Agent

the last known value destSeqNum(rreq) ∈ NAT ∪ {unknown} the
request originator knows about the curSeqNum(dest(rreq))

known(rreq) indicating whether destSeqNum(rreq) is reliable

the request originator origin(rreq) ∈ Agent

the originator’s originSeqNum(rreq) ∈ NAT

the length hopCount(rreq) ∈ NAT of the path the rrequest traveled
from its origin(rreq) to its current rreq-sender

the value localId(rreq) ∈ NAT of localReqCount + 1 at the
origin(rreq) when the rreq is generated

NB. Global identification of rreq via the following equation:

globalId(rreq) = (localId(rreq), origin(rreq))

Copyright CC BY–NC-SA 4.0 10



Aodv data structure: RouteReply

Each route reply msg rrep ∈ RouteReply , when generated, records
information about:

the destination d = dest(rrep) ∈ Agent of the detected route

the value destSeqNum(rrep) ∈ NAT of curSeqNum(d)

– as known at an intermediate node (not d), if rrep is generated there

– or as updated when the dest ination node d generates rrep

the request originator origin(rrep) ∈ Agent to whom the reply is
addressed

the length hopCount(rrep) ∈ NAT of the current route from the
rrep-sender to dest(rrep)

NB. We abstract from concerns about rrep lifetime, network traffic and
performance properties.

Copyright CC BY–NC-SA 4.0 11



Aodv data structure: RouteError

Each route error msg rerr ∈ RouteError , sent by an agent a,

indicates a set of destinations, together with their increased
destSeqNum value, which became unreachable via a, i. e. cannot be
reached at present using a as nextHop of a route entry

inactivates every route table entry which uses the rerr sender a as
nextHop to any relevant unreachable destination communicated by
rerr

is forwarded along the precursor chain

Copyright CC BY–NC-SA 4.0 12



GenerateRouteReq(destination)

let r = new (RouteRequest) in

dest(r ) := destination

destSeqNum(r ) :=

lastKnownDestSeqNum(destination,RT )

if entryFor (destination,RT ) 6= undef

then known(r ) := known(entryFor (destination,RT ))

else known(r ) := false

origin(r ) := self originSeqNum(r ) := curSeqNum + 1

hopCount(r ) := 0 localId(r ) := localReqCount + 1

Broadcast(r ) -- i.e. forall n ∈ neighb do Send(r , to n)

Increment(curSeqNum) Increment(localReqCount)

Buffer(r ) -- i.e. Insert(globalId(r ),ReceivedReq)

NB. Buffer(r ) helps to recognize whether r has been ‘seen’ already
Copyright CC BY–NC-SA 4.0 13



ProcessRouteReq(rreq)

if Received(rreq) and rreq ∈ RouteRequest then

if not AlreadyReceivedBefore(rreq) then -- rreq processed once

Buffer(rreq)

if HasNewReverseRouteInfo(rreq) then

BuildReverseRoute(rreq)

seq

if FoundValidPathFor (rreq)

then GenerateRouteReply(rreq)

else ForwardRefreshedReq(rreq)

Consume(rreq)

NB. GenerateRouteReply sends rreply to nextHop in—possibly
by BuildReverseRoute updated—entryFor (origin(rreq),RT ),
which could be different from sender (rreq).

Copyright CC BY–NC-SA 4.0 14



A req where HasNewReverseRouteInfo(req) is false

AlreadyReceivedBefore(req) iff globalId(req) ∈ ReceivedReq

// i.e. req has been Buffered when received for the first time

Such route req msgs are simply discarded. Nothing else happens.

Otherwise, if the req brings no new reverse route information to the RT
of the receiving agent, the existing reverse route entry is kept unchanged
and the protocol proceeds to either GenerateRouteReply(rreq) or
ForwardRefreshedReq(rreq).

HasNewReverseRouteInfo(req) iff req ∈ RouteRequest and

ThereIsNoRouteInfoFor (origin(req),RT ) or

(ThereIsRouteInfoFor (origin(req),RT ) and

HasNewOriginInfo(req ,RT ))

Copyright CC BY–NC-SA 4.0 15



When HasNewOriginInfo(req) to update the reverse route

HasNewOriginInfo(req ,RT ) iff

let entry = entryFor (origin(req),RT )

originSeqNum(req) > destSeqNum(entry)

or originSeqNum(req) = destSeqNum(entry) and

(hopCount(req) < hopCount(entry) or

not Active(entry))

NB. For comparison with destSeqNumbers, every natural number n is
stipulated to be better than unknown, formally unknown < n.

Copyright CC BY–NC-SA 4.0 16



BuildReverseRoute(rreq) component

if ThereIsRouteInfoFor (origin(rreq),RT ) then

UpdateReverseRoute(entryFor (origin(rreq),RT ), rreq)

else ExtendReverseRoute(RT , rreq)

where

UpdateReverseRoute(e, req) =

destSeqNum(e) := originSeqNum(req) -- freshest destSeqNum

known(e) := true Active(e) := true

nextHop(e) := sender (req)

hopCount(e) := hopCount(req) + 1 -- maybe shorter path

ExtendReverseRoute(RT , req) =

let e = new (RT )

dest(e) := origin(req) precursor (e) := ∅
UpdateReverseRoute(e, req)

Copyright CC BY–NC-SA 4.0 17



Redirecting Reverse Route example

Reverse routes for segments of rreq-path from a1 to an+1 are created.

a1 ai an+1

rreqa1,an+1 [1]

ai receives a new req from a1 to another destination and redirects the
rreq reverse route at ai .

1

a1 ai an+1

b

reqa1,b[2]

1 Figures c© 2018 Springer-Verlag Berlin Heidelberg, reprinted with permission

Copyright CC BY–NC-SA 4.0 18



The meaning of FoundValidPathFor (req)

either req is received by the dest ination node

or an ‘intermediate’ node which KnowsFreshEnoughRouteFor the
dest(req) receives the req :

FoundValidPathFor (req) iff

dest(req) = self or KnowsFreshEnoughRouteFor (req ,RT )

A ‘fresh enough’ route entry besides being Active must have a
ValidDestSeqNumber that is not smaller than the destSeqNumber of
the received route request :

KnowsFreshEnoughRouteFor (req ,RT ) iff forsome entry ∈ RT

dest(entry) = dest(req) and ValidDestSeqNum(entry)

and destSeqNum(entry) ≥ destSeqNum(req)

and Active(entry)

Copyright CC BY–NC-SA 4.0 19



req forwarding increases hopCount and possibly destSeqNum

ForwardRefreshedReq(r ) =

let r ′ = new (RouteRequest)

Copy(dest , origin, originSeqNum, localId , known,

from r to r ′)

hopCount(r ′) := hopCount(r ) + 1

destSeqNum(r ′) := max{destSeqNum(r ),

lastKnownDestSeqNum(dest(r ),RT )}
Broadcast(r ′)

where

Copy(f1, . . . , fn , from arg to arg ′) =

forall 1 ≤ i ≤ n do fi(arg
′) := fi(arg)

Copyright CC BY–NC-SA 4.0 20



GenerateRouteReply(rreq) at dest or intermediate node

let r = new (RouteReply)

let revEntry = entryFor (origin(rreq),RT )

dest(r ) := dest(rreq)

origin(r ) := origin(rreq)

if dest(rreq) = self then -- reply at destination node

hopCount(r ) := 0

destSeqNum(r ) := max{curSeqNum, destSeqNum(rreq)}
curSeqNum := max{curSeqNum, destSeqNum(rreq)}

else let fwdEntry = entryFor (dest(rreq),RT ) -- at intermediate

hopCount(r ) := hopCount(fwdEntry) -- node

destSeqNum(r ) := destSeqNum(fwdEntry)

PrecursorInsertion(nextHop(revEntry), fwdEntry)

Send(r , to nextHop(revEntry)) -- maybe to sender (rreq)

Copyright CC BY–NC-SA 4.0 21



The role of precursor nodes

Consider the case that a node a has an entryFor (d ,RT ) and by a
rerror msg, received by a, node d is reported as unreachable.

Then each neighbor (a) which has a route entry to d that uses a as
nextHop is called a precursor of a.

The precursor set is recorded in entryFor (d ,RT ) so that such a
rerror msg can be propagated to its elements.

PrecursorInsertion(node, entry) =

Insert(node, precursor (entry))

NB. We leave ‘gratuitous’ replies as an exercise. Through gratuitous
replies, a destination node obtains a reverse route to the request
originator without having requested a route, namely in case an
intermediate node answered the request. For this case one needs also a
PrecursorInsertion of nextHop(fwdEntry) into
precursor (revEntry).

Copyright CC BY–NC-SA 4.0 22



ProcessRouteRep(rrep)

if Received(rrep) and rrep ∈ RouteReply then

if HasNewForwardRouteInfo(rrep) then -- else just discard rrep

BuildForwardRoute(rrep)

if MustForward(rrep) then ForwardRefreshedRep(rrep)

Consume(rrep)

where -- note symmetry to ProcessRouteReq

HasNewForwardRouteInfo(rep) iff rep ∈ RouteReply and

ThereIsNoRouteInfoFor (dest(rep),RT ) or

(ThereIsRouteInfoFor (dest(rep),RT ) and

HasNewDestInfo(rep,RT ))

MustForward(rep) iff

origin(rep) 6= self and Active(entryFor (origin(rep),RT ))

Copyright CC BY–NC-SA 4.0 23



Meaning of HasNewDestInfo

HasNewDestInfo(rep,RT ) iff -- rep has either

let entry = entryFor (dest(rrep),RT )

destSeqNum(rep) > destSeqNum(entry) -- better destSeqNum

or (destSeqNum(rep) = destSeqNum(entry)

and hopCount(rep) + 1 < hopCount(entry))

-- or shorter path

or (destSeqNum(rep) = destSeqNum(entry)

and Active(entry) = false) -- or not Active(entry)

NB. Remember unknown < n for each n = 0, 1, . . .

Copyright CC BY–NC-SA 4.0 24



BuildForwardRoute(rrep) with fresh info

if ThereIsRouteInfoFor (dest(rrep),RT )

then UpdateForwardRoute(entryFor (dest(rrep),RT ), rrep)

else ExtendForwardRoute(RT , rrep) -- create new entry

where

UpdateForwardRoute(e, rep) = -- copying fresh info

destSeqNum(e) := destSeqNum(rep) known(e) := true

nextHop(e) := sender (rep) hopCount(e) := hopCount(rep) + 1

Active(e) := true SetPrecursor(rep, e)

ExtendForwardRoute(RT , rep) =

let e = new (RT )

dest(e) := dest(rep) UpdateForwardRoute(e, rep)

SetPrecursor(rep, e) = if MustForward(rep) then

Insert(nextHop(entryFor (origin(rep),RT )), precursor (e))

Copyright CC BY–NC-SA 4.0 25



ForwardRefreshedRep(rep)

Upon forwarding rep, only the hopCount is updated:

ForwardRefreshedRep(rep) =

let rep′ = new (RouteReply)

Copy(dest , destSeqNum, origin, from rep to rep′)

hopCount(rep′) := hopCount(rep) + 1

Send(rep′, to nextHop(entryFor (origin(rep),RT )))

Copyright CC BY–NC-SA 4.0 26



Redirecting Forward Route example (1)

Destination an+1 answers rreq before req by rrep with destSeqNum 0

a1 ai an+1

b

rreqa1,an+1
[1]

reqb,an+1
[1]

rrepa1,an+1
(0)

rrqan+1,z[2]

an+1 broadcasts a new rrq for destination z , curSeqNum := 1

a1 ai an+1

b

rreqa1,an+1
[1]

reqb,an+1
[1]

rrepa1,an+1
(0)

rrqan+1,z[1]

z

Copyright CC BY–NC-SA 4.0 27



Redirecting Forward Route example (2)

an+1 answers req by rep with destSeqNum(rep) := 1

ai receives rep before rrep and establishes entryFor (an+1,RT (ai))
with destSeqNum 1

rrepa1,an+1(0) is discarded at ai

a1 ai an+1an+1

b

rreqa1,an+1
[1]

reqb,an+1
[1]

rrepa1,an+1
(0)

rrqan+1,z[1]

repb,an+1
(1)

z

Copyright CC BY–NC-SA 4.0 28



Redirecting Forward Route example (3)

A new route request may be answered by ai as intermediate node
establishing the dotted communication path (· · ·) from a1 to an+1
The communication path from an+1 to a1 still goes along the reverse
route established by rreqa1,an+1[1]

2

a1 ai an+1an+1

b

rrqan+1,z[1]

z

2 Figures (1)-(3) c© 2018 Springer-Verlag Berlin Heidelberg, reprinted with permission

Copyright CC BY–NC-SA 4.0 29



Generation of error messages

GenerateRouteErr =

let BrokenEntry = -- compute Active entries with broken link

{entry ∈ RT | LinkBreak (nextHop(entry)) and Active(entry)}
forall entry ∈ BrokenEntry -- if there are any

Active(entry) := false -- Invalidate entry

Increment(destSeqNum(entry)) -- and destSeqNum

let rerr = {(dest(e), destSeqNum(e) + 1) |
e ∈ BrokenEntry and precursor (e) 6= ∅}

forall a ∈ precursor (entry) Send(rerr , to a)

NB. Stipulation unknown + 1 = unknown

Copyright CC BY–NC-SA 4.0 30



PropagateRouteErr(rerr )

if Received(rerr ) and rerr ∈ RouteError then

let UnreachDest = {(d , s) ∈ rerr | forsome entry ∈ RT

d = dest(entry) and nextHop(entry) = sender (rerr )

and Active(entry) and destSeqNum(entry) < s}
forall (d , s) ∈ UnreachDest let entry = entryFor (d ,RT )

Active(entry) := false

destSeqNum(entry) := s

forall a ∈ precursor (entry) Send(rerr ′, to a)

if WaitingForRouteTo(d) then ReGenerateRouteReq(d)

Consume(rerr )

where err ′ =

{(d ′, s ′) ∈ UnreachDest | precursor (entryFor (d ′,RT )) 6= ∅}
ReGenerateRouteReq(d) = (WaitingForRouteTo(d) := false)

Copyright CC BY–NC-SA 4.0 31



Conclusion: What else to do with a rigorous model?

system debugging by rigorous model analysis

– (dis)prove system properties of interest (e.g. using PVS, KIV,...)

• for AODV: loop freedom and correctness proved, route discovery
and packet delivery disproved for process algebra model in TR 5513
(for loop freedom using Isabelle)

– identify shortcomings (here e.g. non-optimal routes)

– testing/modelchecking of executable model refinements (e.g. in
CoreASM, Asmeta, ...)

system evaluation by comparison of implementations with the model

– in TR 5513 done for five key AODV implementations, three of them
shown to possibly produce routing loops

model reuse for experimenting with system extensions/variations, prior
to coding

documentation for maintenance needs

Copyright CC BY–NC-SA 4.0 32



References

C.E. Perkins, E.M. Belding-Royer, S. Das: Ad hoc On-Demand
Distance Vector (AODV) Routing

– RFC 3561, Networking Group. http:///www.ietf.org/rfc/rfc3561.txt

A. Fehnker, R. van Glabbeek, P. Höfner, A. McIver, M. Portmann,
W.L. Tan: A process algebra for wireless mesh networks used for
modelling, verifying and analysing AODV

– TR 5513, NICTA, 2013. http://www.nicta.com.au/pub?id=5513

E. Börger, A. Raschke: Modeling Companion for Software Practitioners

– Springer 2018. (Ch.6.1)
http://modelingbook.informatik.uni-ulm.de

Copyright CC BY–NC-SA 4.0 33

http://modelingbook.informatik.uni-ulm.de


Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the original authors are mentioned

modified slides are made available under the same licence

the (re-) use is not commercial

Copyright CC BY–NC-SA 4.0 34


