
Egon Börger (Pisa) & Alexander Raschke (Ulm)

Modeling Contex-Aware Behavior by Ambient ASMs

Thread Behavior and Thread Management Case Study

Università di Pisa, Dipartimento di Informatica, boerger@di.unipi.it
Universität Ulm, Abteilung Informatik, alexander.raschke@uni-ulm.de

See Ch. 4.2 of Modeling Companion
http://modelingbook.informatik.uni-ulm.de
Copyright CC BY–NC-SA 4.0 1

Theme: Modeling context-aware system behavior

Question: How to gently model contexts and programs whose run
behavior depends on the context in which the program is executed?

Often contexts are called environments, not to be confused with env
understood as interpretation of free variables

In this lecture we use the following 2 examples:

Encapsulation of process runs to separate concurrent process
executions, e.g.

– runs of threads in Java

– computations of instances of processes which execute similar or even
the same program but with different data

Encapsulation of state by scoping disciplines

Idea: use parameterization to model context dependency.

Copyright CC BY–NC-SA 4.0 2

The role of parameterization for ASMs

Parameterizing ASM functions and rules permits to directly model:

partitioning/isolating of states and distributed computations

– of agents which concurrently execute in heterogeneous contexts

various forms of information hiding (encapsulation of memory)

– statically: scope, module, package, library, etc.

– dynamically: executing agents, threads, process instances, etc.

patterns of programming, of communication and of control flow

mobility (environments where agents can move)

modularity (of specs and property verifications)

Exploit simplicity of semantical foundation of parameterization:

f (x) = fparams(x)

in particular when used with implicit (hidden) parameters, supporting
conventional implicit oo parameterization this .f (x) = f (x)

Copyright CC BY–NC-SA 4.0 3

Ambient ASMs to explicitly support env-sensitive actions

Idea: enrich ASMs by an abstract ambient parameter

with respect to which the terms involved in a step are evaluated

for ambients (environments) at whatever level of abstraction

which can be created, modified, deleted, also at run time

Syntactical construct: amb exp in P

where to achieve generality in the widest terms

exp is any expression (term)

P is any (already defined) ASM program

Intended behavior (see definition below):

Push the eval(exp, S , env , amb) of the newly declared ambient
expression to the current ambient

execute P in the new ambient

Function classification is extended by ambient (in)dependent fcts.

Copyright CC BY–NC-SA 4.0 4

Ambient dependent functions and their evaluation

AmbDependent(f) (wrt Amb) iff

forsome a, a ′ ∈ Amb with a 6= a ′ forsome x f (a, x) 6= f (a ′, x)

Otherwise f is called AmbIndependent . We also say environment
(in)dependent, hoping that Ambients will not be confused with
Env ironments (interpretation of free variables in a state).

Case AmbDependent(f):

eval(f (t1, . . . , tn), S , env , amb) =
fS (amb, eval(t1, S , env , amb), . . . , eval(tn , S , env , amb))

Here fS is turned into a family of possibly different functions fS ,amb.

Case AmbIndependent(f) (unchanged interpretation of f):

eval(f (t1, . . . , tn), S , env , amb) =
fS (eval(t1, S , env , amb), . . . , eval(tn , S , env , amb))

Copyright CC BY–NC-SA 4.0 5

Semantics of ambient ASMs

To avoid a signature blow up by dynamic ambient nesting, we adopt
Simone Zenzaro’s idea (PhD Thesis, Pisa 2016) to

treat amb as a stack

where new ambient expressions are pushed (passed by value)

so that for each f (n) one extension f (n+1) suffices which offers an
additional argument position for the interpretation of f (n) in a given
ambient.

The body of amb exp in P is then executed with the new stack value.

Yields(amb exp in P , S , env , amb,U) if

Yields(P , S , env ,push(eval(exp, S , env , amb), amb),U)

NB. Often the execution of P (read: the interpretation fS ,amb)
depends only on the top of the stack, i.e. on eval(exp, S , env , amb)
(flat ambient ASMs, see JCSS 2012).

Copyright CC BY–NC-SA 4.0 6

Special case: flat ambient ASMs

Only the last declared (most recent) ambient is kept

instead of an ambient stack (of nested ambients) to which each newly
declared environment is Pushed

– This was the original definition of ambient ASMs in JCSS 2012,
which is generalized by the stack interpretation of ambients.

For flat ambients it suffices to bind the value of the expression in the
ambient declaration

which is computed in the current state (in the current ambient)

to a logical variable, say curamb:

(ambflat exp in P)∗ = (let curamb = exp∗ in P∗)

where exp∗ is obtained from exp by replacing the names f of ambient
dependent functions in exp by fcuramb

Copyright CC BY–NC-SA 4.0 7

Inductive transformation of flat ambient ASMs

transformation of terms:

– for AmbIndependent(f) define:

(f (t1, . . . , tn))
∗ = f (t∗1 , . . . , t∗n)

• logical variables and names of parameterized rules are classified as
ambient independent

– for AmbDependent(f) define:

(f (t1, . . . , tn))
∗ = f (curamb, t∗1 , . . . , t∗n)

transformation of ambient ASM rules (to standard ASM programs):

– for update rules define:

(f (t1, . . . , tn) = t)∗ = (f (t1, . . . , tn)
∗ := t∗)

– for ambient rules define (eliminating ambflat):

(ambflat exp in P)∗ = (let curamb = exp∗ in P∗)
– for the other rules use induction on ASM programs, e.g.

(let x = t in P)∗ = (let x = t∗ in P∗)

Copyright CC BY–NC-SA 4.0 8

Encapsulating computations in distributed runs

Goal: isolate executions of various tasks by different agents

Technical issue: separate concurrent (e.g. multi-core) executions and
scheduling from task execution by single agents

In this lecture we illustrate how to use ambient ASMs for the purpose
by two concrete examples (though the principles can be applied also to
other distributed systems and concurrent request management
schemes):

– using a component which encapsulates single-thread executions of
Java code to model concurrent runs of multiple Java threads

– modeling Java thread pool management (for J2SE 5.0), using a
component which encapsulates to Run a thread to Execute a
task

Copyright CC BY–NC-SA 4.0 9

From single-thread to multi-thread Java interpreter

Goal: Define a concurrent MultiThreadJavaInterpreter model
which separates the thread instances of the underlying runs of a
SingleThreadJavaInterpreter.

A SingleThreadJavaInterpreter ASM has been defined in:

R. Stärk and J. Schmid and E. Börger, Java and the JVM . Definition,
Verification, Validation. Springer 2001. (Called JBook)

It has been used there (Ch. 7) to define a multi-thread Java interpreter
model to execute multiple tasks with shared main and local working
memory. It adopts an abstract scheduling mechanism which

selects each time one Runnable thread, out of the current Thread
class instances in the heap, to Run it

makes a Synchronizing or Notified thread Active before Running it

Using ambient ASMs saves the explicit restoring/saving of the current
state of a thread when the thread is scheduled to Run or descheduled.

Copyright CC BY–NC-SA 4.0 10

Encapsulating single-thread Java code executions

MultiThreadJavaInterpreter =

if Runnable(t) then

AcquireLocks(t) seq Run(t)

where

Run(t) = ambflat t in SingleThreadJavaInterpreter

Restoring/saving current thread state can be skipped by declaring:

Amb = Thread (i.e. implicit parameterization by threads)

as AmbDependent the thread state functions used in the ASM
SingleThreadJavaInterpreter, namely:

– meth, restbody , pos , locals constituting the current frame

– frames denoting the frame stack

– thread denoting the executing thread

Copyright CC BY–NC-SA 4.0 11

Mono-core vs multi-core model

The JBook execJavaThread ASM chooses one t ∈ Runnable and to
Run(t) assigns it as the currently executing thread := t

– In JBook thread is the agent which executes the
SingleThreadJavaInterpreter (single-core view)

The MultiThreadJavaInterpreter ASM as defined here
triggers a concurrent ASM run of all threads which are Running.

– NB. Run(t) can be refined by assigning this execution to a specific
computer or core.

– NB. Thread and Runnable are dynamic sets.

NB. Ambient separation supports modular verifications:

see ASM-based analysis of C# thread model (LNCS 3052, TCS 343)

see proofs for conservative theory extensions corresponding to
incremental model extensions in D. Batory/E. Börger: Modularizing
Theorems for Software Product Lines: The Jbook Case Study. J.UCS
2008

Copyright CC BY–NC-SA 4.0 12

Submachines of MultiThreadJavaInterpreter

Pro memoria definitions from the JBook:

Runnable(t) iff

mode(t) = active

or (mode(t) = synchronizing and locks(syncObj (t)) = 0)

or (mode(t) = waiting and locks(waitObj (t)) = 0)

AcquireLocks(t) =

if mode(t) = synchronizing(t) then Synchronize(t)

if mode(t) = notified(t) then WakeUp(t)

Active(q) := true

Synchronize(t) = Refresh sync(t) by syncObj (t)

WakeUp(t) = Reaquire all sync claims on waitObj (t)

Copyright CC BY–NC-SA 4.0 13

Isolating application-logic task exec from task management

Goal: separate thread management

creation, deletion and scheduling of threads t to concurrently run tasks

– assign t to task, decouple t from task, suspend t

and its specification from the execution and application-logic-level
specification of tasks

Exl: J2SE 5.0 (see S. Oaks and H. Wong: Java Threads, O’Reilly 2004)

NB. Principles can be applied also to other concurrent request
management systems, e.g. web servers

Copyright CC BY–NC-SA 4.0 14

Thread management actions

assignment of threads to tasks upon TaskEntry

decoupling of threads from tasks upon TaskCompletion

creation of threads

suspension of threads

– making them idle to possibly RunTaskFromQueue

deletion of threads

– if one cannot any more RunTaskFromQueue so that the thread has
to Exit

Copyright CC BY–NC-SA 4.0 15

J2SE 5.0 thread pool requirements (1)

corePoolSizeReq. The thread pool should be kept as much as possible
within corePoolSize. When a new task is submitted and fewer than
corePoolSize threads are running, a new thread is created to handle the
request, even if there are idle threads. If when the task is submitted the
pool has reached or exceeds the corePoolSize but not the maxPoolSize
and there are idle threads in the pool, one of them is assigned to run the
task.

maxPoolSizeReq. If a task is submitted for execution when the pool is
full and all threads in the pool are running, the task is inserted into a
queue. If the queue is full the task is rejected.

QueuePriorityReq. If a task is submitted for execution when
corePoolSize or more threads are running but the pool is not yet full
and no idle thread is available, then a new thread is created and assigned
to run the task only if the task cannot be placed to the queue without
blocking it.

Copyright CC BY–NC-SA 4.0 16

J2SE 5.0 thread pool requirements (2)

RunCompletionReq. If when a thread has completed its current run there
are tasks in the queue, the thread is assigned to run one of them.
Otherwise it becomes idle.

IdleThreadReuseReq. When there is a task in the queue, an idle thread,
if there is one, is assigned to run the task.

IdleThreadExitReq If there are more than corePoolSize threads in the
pool, excess threads will be terminated if they have been idle for more
than the keepAliveTime.

Copyright CC BY–NC-SA 4.0 17

ThreadPoolMngr

first three requirements ask to HandleNewTasks

last three concern idle threads: how to HandleQueuedTasks

In both an idle thread may be assigned to run the task in question, but
only one task per thread :

abstract from scheduling by letting the ThreadPoolMngr choose
in each step one of the two components for execution

ThreadPoolMngr =

one of ({HandleNewTask, HandleQueuedTask})
where

one of (Rules) =

choose R ∈ Rules do R

Copyright CC BY–NC-SA 4.0 18

HandleNewTask(task) component

HandleNewTask(task) = if Submitted(task) then

if | Pool |< corePoolSize -- first create corePoolSize threads

then let t = new (Pool) in Run(t , task)

else if | Pool |< maxPoolSize then -- first try Idle threads

choose t ∈ Pool with Idle(t) Run(t , task)

if none if BlockingFreePlaceable(task , queue)

then Insert(task , queue) -- first fill queue

else let t = new (Pool) in Run(t , task)

else if forall t ∈ Pool Running(t) then

if | queue |< maxQueuesize then Insert(task , queue)

else Reject(task)

where Run(thread , task) = (mode(thread) := running par

ambflat task in Execute(pgm(task)))

Copyright CC BY–NC-SA 4.0 19

HandleQueuedTask component

The RunCompletionRequirement seems to establish a reuse priority of
Terminated threads over idle ones. Thus we try:

first to FindTaskForTerminated threads satisfying the
RunCompletionReq

then to FindTaskForIdle threads satisfying the two idle thread
requirements

HandleQueuedTask =

choose thread ∈ Pool with Terminated(thread)

FindTaskForTerminated(thread)

if none

choose thread ∈ Pool with Idle(thread)

FindTaskForIdle(thread)

Terminated(t) iff mode(t) = idle expresses that a thread has
completed the run for the assigned task.
Copyright CC BY–NC-SA 4.0 20

FindTaskForTerminated(thread) submachines

NB. If there is no task in the queue, a terminated thread becomes idle.

FindTaskForTerminated(thread) =

choose task ∈ queue

Run(thread , task)

Delete(task , queue)

if none

MakeIdle(thread)

where

MakeIdle(thread) =

mode(thread) := idle

terminationTime(thread) := now

-- set timer for keepAliveTime(thread)

Copyright CC BY–NC-SA 4.0 21

FindTaskForIdle(thread) submachine

NB. An idle thread may be killed if the pool grew over the
corePoolSize and the keepAliveTime(thread) has expired

FindTaskForIdle(thread) =

choose task ∈ queue

Run(thread , task)

Delete(task , queue)

if none TryToKill(thread)

where

TryToKill(t) =

if | Pool |> corePoolSize then

if Expired(aliveTime(t)) then Delete(t ,Pool)

Expired(aliveTime(t)) iff

now − terminationTime(t) > keepAliveTime(t)

Copyright CC BY–NC-SA 4.0 22

Encapsulating state: scoping disciplined evaluation scheme

Value of id in a state depends on

the pos ition in the program where id occurs

an env among those which have a binding for id (i.e. a defined
associated value) and whose scope (program part where its bindings
are valid) includes pos

EnvSensitiveEval(id , pos , state) =

if Occurs(id , pos , state) then

let E = Env ∩ {e | inScope(pos , e, state) ∧ HasBinding(e, id)}
let env = select(E) -- stands for choose env ∈ E

amb env in GetValue(id)

GetValue retrieves the value of an id given an env .

Variations: refining select function and inScope predicate

lexical scoping (Pascal,C), dynamic scoping (Logo), combination of
lexical and dynamic scoping (Java)

Copyright CC BY–NC-SA 4.0 23

Encapsulating state: scoping discipline instances

Using select to shadow bindings in case id is bound in multiple envs all
of which are valid at pos

Example: stack-based last-in/first-out (LIFO) scope selection

EnvSensitiveLifoEval(id , pos , state) =

EnvSensitiveEval(id , pos , state)

where select(E) is constrained to yield an env satisfying

forall e ∈ E env v e -- language defined v

Copyright CC BY–NC-SA 4.0 24

Encapsulating state: TCL scoping discipline

TCL: allows to select any binding of names established in any enclosing
scope (possibly hidden by a nearer scope)

TclEval(id , pos , state) = if Occurs(id , pos , state) then

let e = selectenv (pos , state) amb e in GetValue(id)

where let n = length(Env)

selectenv (pos , s) =

Env [0] if pos is in global id

Env [n − k] if pos is in upvar k id v

Env [k] if pos is in upvar #k id v

Env [n] otherwise // current scope

upvar k id v binds v to id as bound in the k -th scope ”up” from the
current scope

dto upvar #k id v with k -th scope ”down” from the global one

Copyright CC BY–NC-SA 4.0 25

References

On ambient ASMs:

E. Börger and A. Raschke: Modeling Companion for Software
Practitioners. Springer 2018
http://modelingbook.informatik.uni-ulm.de

– Ch.4 contains other applications of ambient ASMs for contex-aware
system models and further references

E. Börger and and A. Cisternino and V. Gervasi: Ambient Abstract
State Machines with Applications.
J. Computer and System Sciences 78.3 (2012) 939-959.

On multi-threaded Java and Java thread management:

R. Stärk and J. Schmid and E. Börger, Java and the JVM. Definition,
Verification, Validation. Springer 2000

S. Oaks and H. Wong: Java Threads. O’Reilly 2004

Copyright CC BY–NC-SA 4.0 26

http://modelingbook.informatik.uni-ulm.de

References on modular property verifications

R. F. Stärk and E. Börger: An ASM Specification of C# Threads and
the .NET Memory Model. LNCS 3052 (2004) 38-60

R. F. Stärk: Formal specification and verification of the C# thread
model.Theoretical Computer Science 343 (2005) 482–508

D. Batory and E. Börger: Modularizing Theorems for Software Product
Lines: The Jbook Case Study. J.UCS 2008

Copyright CC BY–NC-SA 4.0 27

Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the original authors are mentioned

modified slides are made available under the same licence

the (re-) use is not commercial

Copyright CC BY–NC-SA 4.0 28

