
Egon Börger (Pisa) & Alexander Raschke (Ulm)

Modeling Contex-Aware Behavior by Ambient ASMs

Behavioral Programming Patterns Case Study

Università di Pisa, Dipartimento di Informatica, boerger@di.unipi.it
Universität Ulm, Abteilung Informatik, alexander.raschke@uni-ulm.de

See Ch. 4.3 of Modeling Companion
http://modelingbook.informatik.uni-ulm.de
Copyright CC BY–NC-SA 4.0 1



Theme: Modeling context-aware system behavior

General question: How to gently model contexts and programs whose
run behavior depends on the context in which the program is executed?

NB. Often contexts are called environments, not to be confused with
env understood as interpretation of free variables

In this lecture we use behavioral programming patterns

source: E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns
(Addison-Wesley 1994)

as examples to model context-aware behavior by ambient ASMs

we recapitulate motivation and definition of ambient ASMs

General idea: use parameterization to model context dependency.

Copyright CC BY–NC-SA 4.0 2



The role of parameterization for ASMs

Parameterizing ASM functions and rules permits to directly model:

partitioning/isolating of states and distributed computations

– of agents which concurrently execute in heterogeneous contexts

various forms of information hiding (encapsulation of memory)

– statically: scope, module, package, library, etc.

– dynamically: executing agents, threads, process instances, etc.

patterns of programming, of communication and of control flow

mobility (environments where agents can move)

modularity (of specs and property verifications)

Exploit simplicity of semantical foundation of parameterization:

f (x ) = fparams(x )

in particular when used with implicit (hidden) parameters, supporting
conventional implicit oo parameterization this .f (x ) = f (x )

Copyright CC BY–NC-SA 4.0 3



Ambient ASMs to explicitly support env-sensitive actions

Idea: enrich ASMs by an abstract ambient parameter

with respect to which the terms involved in a step are evaluated

for ambients (environments) at whatever level of abstraction

which can be created, modified, deleted, also at run time

Syntactical construct: amb exp in P

where to achieve generality in the widest terms

exp is any expression (term)

P is any (already defined) ASM program

Intended behavior (see definition below):

Push the eval(exp, S , env , amb) of the newly declared ambient
expression to the current ambient

execute P in the new ambient

Function classification is extended by ambient (in)dependent fcts.

Copyright CC BY–NC-SA 4.0 4



Ambient dependent functions and their evaluation

AmbDependent(f ) (wrt Amb) iff

forsome a, a ′ ∈ Amb with a 6= a ′ forsome x f (a, x ) 6= f (a ′, x )

Otherwise f is called AmbIndependent . We also say environment
(in)dependent, hoping that Ambients will not be confused with
Env ironments (interpretation of free variables in a state).

Case AmbDependent(f ):

eval(f (t1, . . . , tn), S , env , amb) =
fS (amb, eval(t1, S , env , amb), . . . , eval(tn , S , env , amb))

Here fS is turned into a family of possibly different functions fS ,amb.

Case AmbIndependent(f ) (unchanged interpretation of f ):

eval(f (t1, . . . , tn), S , env , amb) =
fS (eval(t1, S , env , amb), . . . , eval(tn , S , env , amb))

Copyright CC BY–NC-SA 4.0 5



Semantics of ambient ASMs

To avoid a signature blow up by dynamic ambient nesting, we adopt
Simone Zenzaro’s idea (PhD Thesis, Pisa 2016) to

treat amb as a stack

where new ambient expressions are pushed (passed by value)

so that for each f (n) one extension f (n+1) suffices which offers an
additional argument position for the interpretation of f (n) in a given
ambient.

The body of amb exp in P is then executed with the new stack value.

Yields(amb exp in P , S , env , amb,U ) if

Yields(P , S , env ,push(eval(exp, S , env , amb), amb),U )

NB. Often the execution of P (read: the interpretation fS ,amb)
depends only on the top of the stack, i.e. on eval(exp, S , env , amb)
(flat ambient ASMs, see JCSS 2012).

Copyright CC BY–NC-SA 4.0 6



Special case: flat ambient ASMs

Only the last declared (most recent) ambient is kept

instead of an ambient stack (of nested ambients) to which each newly
declared environment is Pushed

– This was the original definition of ambient ASMs in JCSS 2012,
which is generalized by the stack interpretation of ambients.

For flat ambients it suffices to bind the value of the expression in the
ambient declaration

which is computed in the current state (in the current ambient)

to a logical variable, say curamb:

(ambflat exp in P)∗ = (let curamb = exp∗ in P∗)

where exp∗ is obtained from exp by replacing the names f of ambient
dependent functions in exp by fcuramb

Copyright CC BY–NC-SA 4.0 7



Inductive transformation of flat ambient ASMs

transformation of terms:

– for AmbIndependent(f ) define:

(f (t1, . . . , tn))
∗ = f (t∗1 , . . . , t∗n)

• logical variables and names of parameterized rules are classified as
ambient independent

– for AmbDependent(f ) define:

(f (t1, . . . , tn))
∗ = f (curamb, t∗1 , . . . , t∗n)

transformation of ambient ASM rules (to standard ASM programs):

– for update rules define:

(f (t1, . . . , tn) = t)∗ = (f (t1, . . . , tn)
∗ := t∗)

– for ambient rules define (eliminating ambflat):

(ambflat exp in P)∗ = (let curamb = exp∗ in P∗)
– for the other rules use induction on ASM programs, e.g.

(let x = t in P)∗ = (let x = t∗ in P∗)

Copyright CC BY–NC-SA 4.0 8



Traditional classification of oo design patterns

by purpose:

– structural patterns concerning composition of classes and objects

– creational patterns concerning creation of objects upon class
instantiation

– behavioral patterns concerning interaction of classes and objects
(flow of control, actions, communication and cooperation)

by scope:

– class patterns dealing with static (compile-time relevant)
composition of (sub)classes (inheritance, accessibility, use relations)

– object patterns dealing with dynamic composition of run-time objects

Using the ASM Method we lift the object-oriented subclassing and
inheritance view to the more general (mathematically precise) ASM
refinement concept, using ambient ASMs.

Copyright CC BY–NC-SA 4.0 9



Behavioral classification of oo design patterns

We illustrate the parameterization of (sub)machines or operations by
implicit arguments by the Delegation pattern and some of its
refinements:

Delegation with various refinement examples

– Structural examples: Template, Proxy

• Proxy with remote, virtual and protection version

– Behavioral examples: (Chain of) Responsability, Bridge

– Incremental refinement: Decorator

Copyright CC BY–NC-SA 4.0 10



Ambient ASM definition of Delegation Pattern behavior

Delegation ‘separates’ instantiations of an Operation

via an abstract Class interface Operation from implementations of
Operation in a concrete DelegateClass1

s.t. at run-time for a call of Operation(x ) one can determine a
delegate in DelegateClass to execute its Operation instance

i.e. the implementation provided in DelegateClass

Class

Operation

DelegateClass

Operation

delegate

Delegate(Operation, delegate)(x ) =

amb delegate in Operation(x )

NB. The pattern permits multiple DelegateClasses.

Pattern variations result from different ways to define delegate.

1 All pattern figures below are c© 2018 Springer-Verlag, reused with permission

Copyright CC BY–NC-SA 4.0 11



Instances of Delegate pattern

Alternatives to define delegate:

internally : define delegate as a location

– in the abstract Class (Bridge pattern)

– in some dedicated subclass to ‘provide a placeholder for another
object’ so that delegate is ‘the real object that the proxy represents’
(Proxy pattern and its refinements)

externally : define delegate

– statically:

• determined by the class structure (Template pattern)

• determined by a data-structure related function (like the chain
traversal function in ChainOfResponsibility pattern)

– dynamically (Responsibility pattern (using run-time determined
select ion function), Bridge and emph Decorator patterns)

Copyright CC BY–NC-SA 4.0 12



Template pattern requirements

AbstractClass
Operation

ConcreteClass
Operation

. . . . . .

Define the skeleton of an algorithm in an operation, deferring some
steps to subclasses. Template Method lets subclasses redefine certain
steps of an algorithm without changing the algorithm’s structure.

Idea: use delegate as denoting a subclass ConcreteClass of
AbstractClass , determined by the static subclass structure.

Copyright CC BY–NC-SA 4.0 13



Template pattern: an instance of Delegate

NB. In an ASM, arbitrary ambient expressions are permitted, e.g.
ConcreteClass .

Template = Delegate where delegate = ConcreteClass

AbstractClass
Operation

ConcreteClass
Operation

. . . . . .

Operation: ‘the skeleton of an algorithm’ (an ‘Application’), may call
some abstract PrimitiveOperations

interfaces in AbstractClass are implemented (as individual
‘MyApplication’) in a ConcreteClass

– which provides its interpretation op(ConcreteClass , x ) of the
abstract PrimitiveOperations op(x ) ‘to carry out subclass-specific
steps of the algorithm’: an ASM refinement of type (1,1)

Copyright CC BY–NC-SA 4.0 14



Responsibility pattern requirements

Goal:

avoid coupling the sender of a request to its receiver by giving more
than one object a chance to handle the request

in particular when static association of caller with delegate is impossible.

It suffices to select a delegate among Receivers in subclasses
Handler 1, . . . ,Handler n of the AbstractClass which CanHandle
the input request

Copyright CC BY–NC-SA 4.0 15



Responsibility pattern: a data-refinement of Delegate

Responsibility Pattern Class Structure:

AbstractClass
Operation

Handler 2
Operation

Handler 1
Operation

. . . Handler n
Operation

Idea: select a delegate among Receivers in subclasses Handler i
(1 ≤ i ≤ n) of the AbstractClass which CanHandle the input request

Responsibility = Delegate

where delegate = select(PossibleHandler (x ))

PossibleHandler (request) = Receiver (request) ∩ Handler (request)

Handler (request) = {o | CanHandle(o,Operation)(request)}

Copyright CC BY–NC-SA 4.0 16



ChainOfResponsibility: data-refined Delegate

Requirements:

‘chain the receiving objects and pass the request along the chain
until an object handles it ... the handler should be ascertained
automatically’

This can be achieved by a data refinement:

of the non-deterministic choice fct select in Responsiblity

to a deterministic function which with respect to an order < (‘chain’)
of Receiver (request) provides the first element that CanHandle the
input request

ChainOfResponsibility = Delegate

where delegate = first(PossibleHandler (x ))

NB. To ‘ascertain’ the handler ‘automatically’ means to program the
delegate function. function

Copyright CC BY–NC-SA 4.0 17



Proxy Pattern requirements and class structure

Proxy intended to ‘provide a surrogate or placeholder for another object
to control access to it’ such ‘that a Proxy can be used anywhere a
RealSubject is expected’.

Class structure:

AbstractClass
Operation

ConcreteClass
Operation

. . . . . .
Proxy

Operation
delegate

delegate becomes ‘the real object that the proxy represents’ and thus is
renamed to RealSubject

value of delegate is a ConcreteClass instance

– kept in a placeholder location of the dedicated Proxy subclass

Copyright CC BY–NC-SA 4.0 18



Proxy Pattern: a data refinement of Delegate

AbstractClass
Operation

ConcreteClass
Operation

. . . . . .
Proxy

Operation
delegate

Via Proxy , client calls of Operation are forwarded to delegate

– which is passed as ambient parameter to the refinement of
Operation

• i.e. to its implementation in the classOf (delegate)

Proxy = Delegate where delegate denotes a location of Proxy

with values in any subclass ConcreteClass of AbstractClass

Copyright CC BY–NC-SA 4.0 19



Further data refinements of Proxy pattern

Refinements by constraints on where the values of delegate are stored or
on the access to delegate:

in a RemoteProxy the delegate location is required to be in a
different address space

in a VirtualProxy the delegate value is cached via some operation
Cache(delegate, request) so that its access can be postponed

in a ProtectionProxy it is checked whether the caller has the
permission to access the Operation in classOf (delegate)

Example: LeadElectection ASM built out of abstract components

Propose, ReceiveMsg,UpdateKnowledge.

These components can be refined to compute

the leader

the leader plus notification of the termination

the leader together with a shortest path to it

Copyright CC BY–NC-SA 4.0 20



Bridge pattern: an instance of Delegate

Implementor
OperationImpl

ConcreteImplementor
OperationImpl

. . . . . .

AbstractClass
Operation

delegate

delegate declared as AbstractClass location, its values are instances of
outsourced implementing subclasses of an Implementor class

with a link relating the interface Operation in AbstractClass to the
interface OperationImpl in Implementor class

Bridge(Operation, delegate) =

Delegate(OperationImpl, delegate)

Run-time choices bw Operation refinements via updates of delegate
replace static binding of implementations via class inheritance.

Copyright CC BY–NC-SA 4.0 21



Decorator pattern requirements and class structure

Requirements:

‘attach additional responsibilities to an object dynamically’ as ‘a
flexible alternative to subclassing for extending functionality’

leaving the Operation behavior of other class instances unchanged

Component
Operation

ConcreteComponent
Operation

. . . . . . Decorator
Operation

ConcreteDecorator
Operation
AddedBehavior

. . . . . .

delegate

Idea: keep ‘a reference to a Component object’ in a delegate location of
a subclass Decorator , an ‘interface for objects that can have
responsibilites added to them dynamically’

one ConcreteDecorator subclass for each AddedBehavior

Copyright CC BY–NC-SA 4.0 22



Decorator pattern: instance of Delegate

As ASM program, Decorator is identical to Delegate:

Decorator(Operation, delegate) =

amb delegate in Operation

where delegate denotes a location of Decorator

with values in any subclass ConcreteDecorator of Decorator

The difference is in how the parameterization of Operation by the
environment is defined

in Decorator, the implementation of Operation extends the
Component Operation by AddedBehavior

in Delegate, there is no extension of the implementation of
Operation

NB. If the pattern only extends functionality without overriding the
behavior of Operation, it represents an instance of incremental
(‘conservative’) ASM refinements.
Copyright CC BY–NC-SA 4.0 23



Work to be done

model more complex not oo-programming-centric patterns, e.g.

– J2EE Core Patterns (Alur et al., Prentice Hall 2003)

– Patterns of Enterprise Application Architecture (Fowler et al.,
Addison-Wesley 2004)

– Enterprise Integration Patterns (Hohpe & Woolf, Addison-Wesley
2004)

– WS-CDL Service Interaction Patterns (Barros et al. 2005)

define genuine modeling-patterns and their refinement

Copyright CC BY–NC-SA 4.0 24



References

On ambient ASMs:

E. Börger and A. Raschke: Modeling Companion for Software
Practitioners. Springer 2018
http://modelingbook.informatik.uni-ulm.de

– Ch.4 contains other applications of ambient ASMs for contex-aware
system models and further references

E. Börger and A. Cisternino and V. Gervasi: Ambient Abstract State
Machines with Applications.
J. Computer and System Sciences 78.3 (2012) 939-959.

On oo programming patterns:

E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns
(Addison-Wesley 1994)

Copyright CC BY–NC-SA 4.0 25

http://modelingbook.informatik.uni-ulm.de


Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the original authors are mentioned

modified slides are made available under the same licence

the (re-) use is not commercial

Copyright CC BY–NC-SA 4.0 26


