
Egon Börger (Pisa) & Alexander Raschke (Ulm)

Modeling Contex-Aware Behavior by Ambient ASMs

Communication Patterns Case Study

Università di Pisa, Dipartimento di Informatica, boerger@di.unipi.it
Universität Ulm, Abteilung Informatik, alexander.raschke@uni-ulm.de

See Ch. 4.4 of Modeling Companion Book
http://modelingbook.informatik.uni-ulm.de
Copyright CC BY–NC-SA 4.0 1



Theme: Modeling context-aware system behavior

General question: How to gently model contexts and programs whose
run behavior depends on the context in which the program is executed?

NB. Often contexts are called environments, not to be confused with
env understood as interpretation of free variables

General idea: use parameterization to model context dependency.

Here we illustrate modeling context-aware behavior by ambient ASMs via

communication patterns for bilateral and multilateral interaction

which can be composed and instantiated to a variety of process
interaction patterns which

– go beyond simple request-response sequences

– may involve a dynamically evolving number of participants (see
Barros/Börger 2005) 1

We recapitulate motivation and definition of ambient ASMs
1 all figures in this lecture are c© 2018 Springer-Verlag and reused with permission

Copyright CC BY–NC-SA 4.0 2



The role of parameterization for ASMs

Parameterizing ASM functions and rules permits to directly model:

partitioning/isolating of states and distributed computations

– of agents which concurrently execute in heterogeneous contexts

various forms of information hiding (encapsulation of memory)

– statically: scope, module, package, library, etc.

– dynamically: executing agents, threads, process instances, etc.

patterns of programming, of communication and of control flow

mobility (environments where agents can move)

modularity (of specs and property verifications)

Exploit simplicity of semantical foundation of parameterization:

f (x ) = fparams(x )

in particular when used with implicit (hidden) parameters, supporting
conventional implicit oo parameterization this .f (x ) = f (x )

Copyright CC BY–NC-SA 4.0 3



Ambient ASMs to explicitly support env-sensitive actions

Idea: enrich ASMs by an abstract ambient parameter

with respect to which the terms involved in a step are evaluated

for ambients (environments) at whatever level of abstraction

which can be created, modified, deleted, also at run time

Syntactical construct: amb exp in P

where to achieve generality in the widest terms

exp is any expression (term)

P is any (already defined) ASM program

Intended behavior (see definition below):

Push the eval(exp, S , env , amb) of the newly declared ambient
expression to the current ambient

execute P in the new ambient

Function classification is extended by ambient (in)dependent fcts.

Copyright CC BY–NC-SA 4.0 4



Ambient dependent functions and their evaluation

AmbDependent(f ) (wrt Amb) iff

forsome a, a ′ ∈ Amb with a 6= a ′ forsome x f (a, x ) 6= f (a ′, x )

Otherwise f is called AmbIndependent . We also say environment
(in)dependent, hoping that Ambients will not be confused with
Env ironments (interpretation of free variables in a state).

Case AmbDependent(f ):

eval(f (t1, . . . , tn), S , env , amb) =
fS (amb, eval(t1, S , env , amb), . . . , eval(tn , S , env , amb))

Here fS is turned into a family of possibly different functions fS ,amb.

Case AmbIndependent(f ) (unchanged interpretation of f ):

eval(f (t1, . . . , tn), S , env , amb) =
fS (eval(t1, S , env , amb), . . . , eval(tn , S , env , amb))

Copyright CC BY–NC-SA 4.0 5



Semantics of ambient ASMs

To avoid a signature blow up by dynamic ambient nesting, we adopt
Simone Zenzaro’s idea (PhD Thesis, Pisa 2016) to

treat amb as a stack

where new ambient expressions are pushed (passed by value)

so that for each f (n) one extension f (n+1) suffices which offers an
additional argument position for the interpretation of f (n) in a given
ambient.

The body of amb exp in P is then executed with the new stack value.

Yields(amb exp in P , S , env , amb,U ) if

Yields(P , S , env ,push(eval(exp, S , env , amb), amb),U )

NB. Often the execution of P (read: the interpretation fS ,amb)
depends only on the top of the stack, i.e. on eval(exp, S , env , amb)
(flat ambient ASMs, see JCSS 2012).

Copyright CC BY–NC-SA 4.0 6



Special case: flat ambient ASMs

Only the last declared (most recent) ambient is kept

instead of an ambient stack (of nested ambients) to which each newly
declared environment is Pushed

– This was the original definition of ambient ASMs in JCSS 2012,
which is generalized by the stack interpretation of ambients.

For flat ambients it suffices to bind the value of the expression in the
ambient declaration

which is computed in the current state (in the current ambient)

to a logical variable, say curamb:

(ambflat exp in P)∗ = (let curamb = exp∗ in P∗)

where exp∗ is obtained from exp by replacing the names f of ambient
dependent functions in exp by fcuramb

Copyright CC BY–NC-SA 4.0 7



Inductive transformation of flat ambient ASMs

transformation of terms:

– for AmbIndependent(f ) define:

(f (t1, . . . , tn))
∗ = f (t∗1 , . . . , t∗n)

• logical variables and names of parameterized rules are classified as
ambient independent

– for AmbDependent(f ) define:

(f (t1, . . . , tn))
∗ = f (curamb, t∗1 , . . . , t∗n)

transformation of ambient ASM rules (to standard ASM programs):

– for update rules define:

(f (t1, . . . , tn) = t)∗ = (f (t1, . . . , tn)
∗ := t∗)

– for ambient rules define (eliminating ambflat):

(ambflat exp in P)∗ = (let curamb = exp∗ in P∗)
– for the other rules use induction on ASM programs, e.g.

(let x = t in P)∗ = (let x = t∗ in P∗)

Copyright CC BY–NC-SA 4.0 8



Eight Basic Communication Patterns

Basic bilateral patterns (sender/receiver agent view):

a) Send b) Receive c) Send/Receive d) Receive/Send

Basic multilateral patterns (sender/receiver agent view):

a) One-to-many send b) One-from-many
receive

c) One-from-many
send-receive

d) One-from-many
receive-send

From these basic patterns one can compose any bilateral/multiple-parties
communication patterns (see Barros/Börger 2005).

Copyright CC BY–NC-SA 4.0 9



Parameters for bilateral communication

Let Send be the Send action of the communication medium which is
used by the Send patterns but left abstract.

The following parameters are considered for bilateral communication:

whether an acknowledgement is requested,

whether the communication action is blocking (in case of reliable
delivery), forcing the agent to wait for a response,

whether the communication action fails,

whether the communication action is repeated (unreliable delivery
case) until an acknowledgement arrives.

Therefore we have the following Send pattern types:

SendType = {noAck ,Ack ,AckAwait ,UntilAck ,UntilAckAwait}
noAck (resp. Ack) does not (resp. does) expect an acknowledgement

Ack (resp. AckAwait) is not (resp. is) blocking

UntilAck ,UntilAckAwait include resending

Copyright CC BY–NC-SA 4.0 10



SendPattern (using communication medium Send(m))

SendPattern(m) =

if ToSend(m) then -- trigger predicate at the sender

if OkSend(m) then -- an open channel connects sender to receiver

Send(m)

if AckRequested(m) then SetWaitCond(m)

if BlockingSend(m) then status := awaitAck (m)

else HandleSendFailure(m, notOkSend)

Done(m)

where

Done(m) = (readyToSend(m) := false)

ToSend(m) iff readyToSend(m) = true

Variations by parameter contraints and component refinements yield the
4 basic bilateral communication patterns above.
Copyright CC BY–NC-SA 4.0 11



SendnoAck without acknowledgement

Appropriate for reliable communication medium where messages are
neither lost nor corrupted:

SendnoAck (m) = SendPattern(m)

where

AckRequested(m) = false

BlockingSend(m) = false

Copyright CC BY–NC-SA 4.0 12



Non-blocking SendAck with acknowledgement

Requirements:

sender must SetWaitCondition for m

depending on whether sender should be blocked it means that either
itself or some other agent should BecomeAwaitHandler for m

SendAck (m) = SendPattern(m)

where

AckRequested(m) = true -- constrain AckRequested

BlockingSend(m) = false -- constrain BlockingSend

SetWaitCond(m) = -- refine SetWaitCond

let a = new (Agent) -- create a handler to wait for an Ack

BecomeAwaitHandler(a,m)

NB. In the non-blocking case, the sender continues its program
execution and the status(sender ) does not change.

Copyright CC BY–NC-SA 4.0 13



BecomeAwaitHandler in SendAck

BecomeAwaitHandler(a,m) =

caller (a) := self -- record callback data

callerpgm(a) := pgm(self) -- record callback data

pgm(a) := HandleAwaitAck(m)

InitializeAwaitParams(m)

where

InitializeAwaitParams(m) = -- placeholder for refinements

Set(waitParams(m)) -- typically deadline, resendtime, . . .

NB. HandleAwaitAck(m) defined below terminates when an
acknowledgement message is received.

Copyright CC BY–NC-SA 4.0 14



HandleAwaitAck submachine of BecomeAwaitHandler

If an ack msg for m arrives, it triggers TerminateAwaitAck(m)
which

– does Unblock(status(caller (self))) where needed and terminates
the wait action (by a call back or by deleting the handler)

– possibly performs some more action we keep here as a placeholder for
future refinements

Otherwise we forsee that the handler which must wait for an
acknowledement may PerformOtherWaitActivities(m)

HandleAwaitAck(m) =

if Received(Ack (m)) then TerminateAwaitAck(m)

else PerformOtherWaitActivities(m)

Copyright CC BY–NC-SA 4.0 15



TerminateAwaitAck submachine of HandleAwaitAck

TerminateAwaitAck(m) =

PerformAction(m) -- to be specified

-- including Unblock(status(caller (self))) where needed

if self = caller (self) -- if sender itself did HandleAwaitAck

then pgm(self) := callerpgm(self) -- switch to original sender pgm

else Exit

where

Exit = Delete(self,Agent) -- kill the agent

Copyright CC BY–NC-SA 4.0 16



PerformOtherWaitActivities

Priorities must be established should HandleAwaitAck be required
to also perform some other wait activities

triggered by events that could happen simultaneously, like timeouts,
failure notice, etc.

We leave them open using the choose operator:

PerformOtherWaitActivities(m) =

one of

if Timeout(m,waitingForAck ) then

HandleTimeout(m,waitingForAck )

if Received(Failed(Ack ,m)) then

HandleSendFailure(m,Ack )

OtherWaitRules(m) -- placeholder for extensions

Copyright CC BY–NC-SA 4.0 17



Blocking variant SendAckAwait of SendAck of

It suffices to refine SetWaitCond(m) to let the sender itself
BecomeAwaitHandler(self,m)

Therefore the sender is ‘blocked’ (must interrupt the execution of its
current program) by switching to status = awaitAck (m)

SendAckAwait(m) = SendPattern(m)

where

AckRequested(m) = true

BlockingSend(m) = true

SetWaitCond(m) =

BecomeAwaitHandler(self,m)

NB. By the definition of SendPattern(m):

BlockingSend(m) = true implies that status(self) := awaitAck (m)

AckRequested(m) = true implies that SetWaitCond(m) is called

Copyright CC BY–NC-SA 4.0 18



Unreliable communication: include Resend

Refine SendAck resp. SendAckAwait by including a Resend(m) rule
into OtherWaitRules of PerformOtherWaitActivities(m)

SendUntilAck (m) = SendAck (m) -- non blocking version

SendUntilAckAwait(m) = SendAckAwait(m) -- blocking version

where

PerformOtherWaitActivities(m) = Resend(m)

Resend(m) =

if Timeout(resend(m)) then

Send(newVersion(m, now )) -- copy and original may differ

SetTimer(resend(m))

Copyright CC BY–NC-SA 4.0 19



SendUntilAckAwait generalizes Alternating Bit protocol

ToSend(m) OkSend(m)
Send(m)

BecomeAwaitHandler(m)

await
Ack(m)

Received
(Ack(m))

Terminate
AwaitAck(m)

Received
(Failed(Ack(m)))

HandleSend
Failure(m,Ack)

Resend(m)

yes

no

yes no

Copyright CC BY–NC-SA 4.0 20



Mailbox handler requirements

Goal: a scheme for what a mailbox handler does when messages arrive.

The mailbox handler uses a Receive machine

– kept abstract with the intended interpretation to insert Arriving
msgs into the destination agent’s mailbox .

We do not treat how the destination agent interacts with its mailbox .

For an Arriving(msg), depending on

whether the mailbox handler is ReadyToReceive(msg)

or if not whether ToBeDiscarded(msg) holds

or if not whether ToBeBuffered(msg) holds

four ReceiveTypes appear in two versions, without or with receive
acknowledgement request:

ReceiveType = {nonBlocking , blocking , discard , buffer}
∪{nonBlockingAck , blockingAck , discardAck , bufferAck}

Copyright CC BY–NC-SA 4.0 21



Mailbox handler requirements (Cont’d)

The ReceiveType parameters mean the following:

nonBlocking requires that ReadyToReceive(msg) is true

blocking requires that in case the mailbox handler is not
ReadyToReceive(msg), the msg should neither be discarded nor
buffered so that the machine must wait until ReadyToReceive(msg)
becomes true

discard requires that a msg the mailbox handler is not
ReadyToReceive(msg) should be discarded

buffer requires that a msg the mailbox handler is not
ReadyToReceive(msg) should not be discarded but buffered

We skip the machine which performs the FromBufferToMailbox
transfer.

Copyright CC BY–NC-SA 4.0 22



ReceivePattern

ReceivePattern(m) =

if Arriving(m) then

if ReadyToReceive(m) then

Receive(m)

AckReceive(m)

else if ToBeDiscarded(m) then

Discard(m)

AckDiscard(m)

else if ToBeBuffered(m) then

Buffer(m)

AckBuffer(m)

We keep Receive(m), Discard(m) and Buffer(m) abstract but
assume that they include a Consume(m) action

here the update Arriving(m) := false

Copyright CC BY–NC-SA 4.0 23



Submachines of ReceivePattern

AckReceive(m) =

if ToBeAcknowledged(m, receive) then

Send(Ack (m), to sender (m))

AckDiscard(m) =

if ToBeAcknowledged(m, discard) then

Send(Ack (m, discarded), to sender (m))

AckBuffer(m) =

if ToBeAcknowledged(m, buffer ) then

Send(Ack (m, buffered), to sender (m))

Copyright CC BY–NC-SA 4.0 24



How to use ReceivePattern for ReceiveType patterns

Goal: Define for each t ∈ ReceiveType a Receivet pattern

Receivet can be obtained as instance of ReceivePattern

by adding appropriate constraints on the predicates which appear in
ReceivePattern

The versions with Acknowledgement are obtained by adding to those
without Acknowledgement the appropriate condition

ToBeAcknowledged(m, ofWhat) = true

where ofWhat ∈ receive, discard , buffer

We therefore define now the four receive patterns without
Acknowledgement (where ToBeAcknowledged(m, ofWhat) = false).

Copyright CC BY–NC-SA 4.0 25



Instantiating ReceivePattern

ReceivenonBlocking(m) = ReceivePattern(m)

where

ReadyToReceive(m) = true

ToBeAcknowledged(m, receive) = false

Receiveblocking(m) = ReceivePattern(m)

where

ToBeDiscarded(m) = ToBeBuffered(m) = false

if ReadyToReceive(m) = true then

ToBeAcknowledged(m, receive) = false

Copyright CC BY–NC-SA 4.0 26



Instantiating ReceivePattern (Cont’d)

Receivediscard (m) = ReceivePattern(m)

where

ToBeDiscarded(m) = not ReadyToReceive(m)

if ToBeDiscarded(m) then

ToBeAcknowledged(m, discard) = false

Receivebuffer (m) = ReceivePattern(m)

where

ToBeDiscarded(m) = false

ToBeBuffered(m) = not ReadyToReceive(m)

if ToBeBuffered(m) then

ToBeAcknowledged(m, buffer ) = false

Copyright CC BY–NC-SA 4.0 27



A variation of ReceivenonBlocking

ReceivenonBlocking as defined above equals Receive.

A variation would be to consider a msg as Received if the mailbox
handler is ReadyToReceive(m) or else if it is ToBeDiscarded(m) or
else ToBeBuffered(m):

ReceivenonBlocking(m) = ReceivePattern(m)

where

ReadyToReceive(m) = true or ToBeDiscarded(m) = true

or ToBeBuffered(m) = true

ToBeAcknowledged(m, receive) =

ToBeAcknowledged(m, discard) =

ToBeAcknowledged(m, buffer ) = false

Copyright CC BY–NC-SA 4.0 28



Bilateral SendReceives ,t requirements

To constrain agents to receive only responses to a previously sent
request, the responseMsg and the reqMsg must be related

by a common item of information in the request and the response that
allows these two messages to be unequivocally related to one another

One way to achieve this without explicit sequentialization of sender steps
is as follows:

let SentReqMsg(sender ) be a set where reqMsgs are recorded

– as part of a refined Sends

let the responder relate its responseMsg to a reqMsg by:

responseTag(responseMsg) := reqMsg

– and include it into responseMsg as part of its refined
SendResponse

check responseTag(m) ∈ SentReqMsg if Arrived(m)

Copyright CC BY–NC-SA 4.0 29



Bilateral SendReceives ,t model

SendReceives ,t(m) = one of ({Sends(m),Receivet(m)})
where

Arriving(m) iff Arrived(m) and responseTag(m) ∈ SentReqMsg

s ∈ SendType, t ∈ ReceiveType

NB. By Lamport’s ordering of communication events
(see Comm. ACM 21.7 (1978))

every sender’s Send(m ′) precedes the receiver’s Receive(m ′)
which precedes the receiver’s Send(m) tagged m ′

which precedes the sender’s Receive(m).

Copyright CC BY–NC-SA 4.0 30



Bilateral ReceiveSendt ,s

let ReqMsgToAnswer (sender ) be a set where reqMsgs which require
sending an answer are recorded

– as part of a refined Receivet

let IsAnswer (m, reqMsg) express that the message m is the answer
to the received reqMsg recorded in ReqMsgToAnswer

ReceiveSendt ,s(m) = one of ({Receivet(m),Sends(m)})
where

ToSend(m) iff

readyToSend(m) = true and

forsome reqMsg ∈ ReqMsgToAnswer IsAnswer (m, reqMsg)

t ∈ ReceiveType, s ∈ SendType

NB. This pattern is used in the web service mediator
(VirtualProvider) in Ch.5.1 of the Modeling Companion Book.

Copyright CC BY–NC-SA 4.0 31



Basic multilateral communication patterns

Goal: formulate schemes for communication among multiple parties

where requests are sent to, and responses received from, multiple
parties instead of a pair of one sender and one receiver

Considering multiple senders/receivers turns the basic bilateral
communication patterns into the following four basic multi-lateral
communication patterns:

a) One-to-many send b) One-from-many
receive

c) One-from-many
send-receive

d) One-from-many
receive-send

From these basic patterns one can compose any communication
interaction among multiple parties (see Barros/Börger 2005).

Copyright CC BY–NC-SA 4.0 32



OneToManySend: Broadcast

OneToManySends(m) is a refinement of Sends(m)

i.e. of SendPattern(m) constrained by t ∈ SendType

refining the communication medium Send(m) to a Broadcast(m)

requiring a (possibly dynamic) set Recipient(m) at the sender side

msg content may depend on the receiver: ‘instantiate a template (i.e.
payload) with data that varies from one party to another’

OneToManySendnoAck (m) = SendPattern(m)

where

AckRequested(m) = BlockingSend(m) = false --SendnoAck

Send(m) = Broadcast(m)

Broadcast(m) =

forall r ∈ Recipient(m) Send(payload(m, r ), r )

Analogously for other SendTypes than noAck .

Copyright CC BY–NC-SA 4.0 33



OneFromManyReceive

Concept implies correlating arriving messages into correlation Groups,
say corresponding to a message type.

Idea: refine in the ReceivePattern

ReadyToReceive(m) to whether the corresponding message group is
Accepting messages of that type

Receive action as msg insertion into correlated group

abstracting from further refinable internal group management (group
creation, consolidation, closure) and ack requirements (see
Barros/Börger 2005)

OneFromManyReceivediscard (m) = Receivediscard (m)

where

ReadyToReceive(m) = Accepting(group(type(m)))

Receive(m) = Insert(m, group(type(m)))

Analogously for other ReceiveTypes than discard .
Copyright CC BY–NC-SA 4.0 34



OneToManySendReceive

Combine OneToManySend with OneFromManyReceive

with SentReqMsg , responseTag to relate Send/Receive actions

– as defined for the corresponding bilateral case SendReceive

OneToManySendReceives ,t(m) = one of

{OneToManySends(m),OneFromManyReceivet(m)}
where

Arriving(m) iff Arrived(m) and responseTag(m) ∈ SentReqMsg

Internal group management decides when a group of collected
responses is sufficient to be taken for further operation as an answer to
the broadcasted request (exl: VirtualProvider).

Timing requirements, for example that responses are expected within a
given time frame, concern the internal group management.

This pattern is used in the web service mediator (VirtualProvider)
in Ch.5.1 of the Modeling Companion Book.
Copyright CC BY–NC-SA 4.0 35



OneFromManyReceiveSend

responseMsg typically formed on the basis of a somehow Completed
group of received reqMsgs

Completed(g) expresses group consolidation

In IsAnswer refine reqMsg by a group, so that:

IsAnswer (m, g) iff m = responseMsg(g)

OneFromManyReceiveSendt ,s(m) =

OneFromManyReceivet(m)

OneToManySends(m)

where ToSend(m) iff readyToSend(m) = true and

forsome g ∈ Group with Completed(g) IsAnswer (m, g)

Exl: message routing through a network

forwarding (via OneToManySend) to Recipients msgs found in
communicator ’s mailbox (via OneFromManyReceive)

– Glässer/Gurevich/Veanes: IEEE Trans. Sw Engg 30 (7) 2004

Copyright CC BY–NC-SA 4.0 36



References

E. Börger and A. Raschke: Modeling Companion for Software
Practitioners. Springer 2018
http://modelingbook.informatik.uni-ulm.de

– Ch.4 contains other applications of ambient ASMs for contex-aware
system models and further references

On communication patterns:

A. Barros and E. Börger: A Compositional Framework for Service
Interaction Patterns and Communication Flows.

– LNCS 3785 (2005) 5-35

U. Glässer and Y. Gurevich and M. Veanes: Abstract communication
model for distributed systems.

– IEEE Trans. Sw Engg 30 (7) 2004

Copyright CC BY–NC-SA 4.0 37

http://modelingbook.informatik.uni-ulm.de


Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the original authors are mentioned

modified slides are made available under the same licence

the (re-) use is not commercial

Copyright CC BY–NC-SA 4.0 38


