
Egon Börger (Pisa)

Alternating Bit and Sliding Window File Transfer Protocol

A ground model ASM and its refinement

Dipartimento di Informatica, Università di Pisa, Italy
boerger@di.unipi.it

Copyright CC BY–NC-SA 4.0 1

Requirements for acknowledged file transfer

Goal. Transfer a finite sequence F (1), . . . ,F (n) of files from a
sender to a receiver s.t.

– eventually the receiver has received the entire sequence (say F = G)

– eventually the sender has received an ack of receipt for each file

– assuming that during the transmission

• finitely many consecutive messages may get lost (but not changed)

•messages do not overtake (i.e. arrive in order of sending)

– with the communication medium kept abstract

NB. It is not required that the receiver receives an ack that the sender
has received an ack for the receipt of the last file.

Copyright CC BY–NC-SA 4.0 2

Algorithmic idea for acknowledged file transfer

In rounds 1, . . . , n, one per file, the sender

– Sends one (the current) file and waits for an acknowledgement

– while wait ing continues to ReSendFile upon timeout

• until an ack of receipt arrives from the receiver

· ‘closing the currRound ’ by stopping resending and enabling to
StartNxtFileTransfer if not yet currRound = n

until the last file transfer (in currRound = n) is acknowledged.

When sending file F (round), a syncBit , here round mod 2, is

– attached to FileMsgs (F (round), round mod 2)

– extracted and resent by the receiver as AckMsgs

– checked upon ReceivedMsg by sender/receiver for Match ing its
own syncBit , namely currRound mod 2

• in case of matching, the syncBit is flipped for next round + 1

Copyright CC BY–NC-SA 4.0 3

Turning the algorithmic idea into a 2-agent ASM AltBit

AltBit is a communicating ASM with 2 agents, sender and receiver,
each coming with its respective program.1

1 Figures c© 2016 Springer-Verlag Germany, reused with permission.

Copyright CC BY–NC-SA 4.0 4

Adding data to AltBit control flow: file (re-)sending action

StartNextFileTransfer =

if currRound < n then -- initially currRound = 0

Send((nextFile, nextSyncBit), to receiver)

IncreaseRound

where

IncreaseRound = (currRound := currRound + 1)

nextFile = F (currRound + 1)

nextSyncBit = currRound + 1 mod 2 -- flipped syncBit

ReSendFile =

Send((F (currRound), currRound mod 2), to receiver)

Initially, at sender , currRound = 0, mode = send , no msgs around.

Copyright CC BY–NC-SA 4.0 5

From English to ASM: when msgs Match

The assumption that msgs do not overtake is reflected by using as
(initally empty) mailboxes MsgQueues.

the receiver’s MsgQueue contains FileMsgs (F (i), i mod 2), where
i mod 2 is the syncBit of the fileMsg

the sender’s MsgQueue contains AckMsgs, which are simply a
syncBit ∈ {0, 1} (so that formally an ackMsg and its syncBit are the
same).

ReceivedMsg iff MsgQueue 6= [] -- mailbox not empty

currMsg = head(MsgQueue) -- msgs arrive in order of sending

Consume(msg) = Delete(msg ,MsgQueue)

Match iff syncBit(currMsg) = currRound mod 2

Copyright CC BY–NC-SA 4.0 6

Adding data to AltBit control flow: receiver actions

Receive&Ack =

StoreFile SendAck Consume(currMsg)

ReSendAck = -- receiver is round-ahead of sender

Send(flip(currRound mod 2), to sender) -- previous sync bit

where SendAck = Send(syncBit(currMsg), to sender)

StoreFile = (G(currRound) := file(currMsg))

Initially, at receiver, currRound = 1, mode = receive, no msgs around.

Copyright CC BY–NC-SA 4.0 7

Remark on timing

We keep the timing abstract by treating timeout as a monitored
location with appropriate assumptions.

For example, one has to assume that

timeout at the receiver is initialized in such a way that ReSendAck
can happen only after the first Receive&Ack

– one way to achieve this is to initialize the receiver’s timer by ∞

For more details on timing assumptions see AsmBook Ch.6.3.1.

Copyright CC BY–NC-SA 4.0 8

Correctness of AltBit file transfer: eventually F = G

Easily proved by induction on currRound phases in AltBit runs:2

2 Figure c© 2003 Springer-Verlag Berlin Heidelberg, reprinted with permission

Copyright CC BY–NC-SA 4.0 9

Improving AltBit protocol by ‘sliding window’ technique

Idea: get rid of no-msg-overtaking assumption as follows:

replace single file transfer rounds by (re)sending, in any order, multiple
files F (i) and the corresponding acks

using as syncBit , instead of i mod 2, directly the indeces i of files
F (i)

indeces represented as members of a dynamically updated sliding
window , one at the sender, one at the receiver

– an interval [low , high] of indeces of the files whose transfer is still
open

• initially window is empty (low = 1, high = 0), at both sender
and receiver

Copyright CC BY–NC-SA 4.0 10

Characteristics of ‘sliding windows’

sender is refined to perform StartNextFileTransfer

– where IncreaseRound becomes IncreaseWindow at the
window’s right end, namely high := high + 1

only if not FullWindow

– where FullWindow iff high − low + 1 = maxWinSize

sender must RecordAcks for files that have been received; each
Acknowledgement of low triggers ReduceWindow, once, at its
left end, namely by low := low + 1

the receiver ’s window ‘follows’ the sender’s window

– maintaining highreceiver ≤ highsender

so that upon receiving a file for the first time, if the file index i is
larger than the right end high of the receiver ’s window, then

– it triggers ‘a round increase’ by SlideWindow at the right end, by
setting high := i (and adapting the left end low correspondingly)

Copyright CC BY–NC-SA 4.0 11

Refining sender actions for SlidingWindow

StartNextFileTransfer guarded by if not FullWindow :

StartNextFileTransfer =

if high < n then -- refining currRound by high

high := high + 1 -- IncreaseWindow at the right end

-- refining IncreaseRound

Send((F (high + 1), high + 1), to receiver)

-- refining nextFile, nextSyncBit

Resending only at the left window end:

ReSendFile = Send((F(low),low), to receiver)

Copyright CC BY–NC-SA 4.0 12

Refining sender’s ‘closing a round’ for SlidingWindow

sender performs ReduceWindow, at the left end, namely by
increasing low when an ack msg for the receipt of the file with index
low has been Received .

Matching ack msgs can arrive from the receiver in any order and with
syncBit > low . Therefore a RecordAck component is needed.

ReduceWindow = -- guarded by Ack (low)

low := low + 1

Ack (low) := false -- shift exactly once per acknowledged file

RecordAck = -- called only in case of Match

if syncBit(currMsg) > low -- must later ReduceWindow

then Ack (syncBit(currMsg)) := 1

else ReduceWindow -- ack received for F (low)

Initially Ack (i) = false for each i

Copyright CC BY–NC-SA 4.0 13

Program of refined SlidingWindow sender actions

Match iff low ≤ syncBit(currMsg) ≤ high -- syncBit ∈ window3

3 Figure c© 2016 Springer-Verlag, reused with permission.

Copyright CC BY–NC-SA 4.0 14

Program of refined SlidingWindow receiver actions

ReSendAck = Send(low, to sender)

SlideWindow =

let i = syncBit(currMsg)

high := i

low := max{1, i − (maxWinSize − 1)}
The other components (in white) are taken unchanged from AltBit

Copyright CC BY–NC-SA 4.0 15

Some properties in states of SlidingWindow runs

call files whose transfer is still open (in a state) those files F (i) which
(in this state) have been sent but

– either the sender has not yet received an Acknowledgement for F (i)

– or Ack (i) = true but

• either low < i

• or low = i and the ReduceWindow rule has not yet been
executed

indices i of files whose transfer is still open are in the sender’s window,
i.e. lowsender ≤ i ≤ highsender

highreceiver ≤ highsender holds in every state

– since highreceiver assumes only values assumed before by highsender

Copyright CC BY–NC-SA 4.0 16

Correctness of SlideWindow

If in a state of a SlidingWindow run, a file msg (F (i), i) is
Received which does not Match and has i ≥ low , then:

– F (i) is a file whose transfer is still open

– thus highreceiver < i ≤ highsender and highreceiver is updated to i
and an ack msg for the receipt of F (i) is sent

– at most maxWinSize − 1 elements of the receiver’s window are
index of files whose transfer is still open

• because there can be at most maxWinSize files whose transfer is
still open: once the sender has a FullWindow , no not-yet-sent file
is sent before the sender performs a ReduceWindow step

Therefore, low can be updated to max{1, i − (maxWinSize − 1)}
– because files with index j < max{1, i − (maxWinSize − 1)} are

files whose transfer is not any more open

Copyright CC BY–NC-SA 4.0 17

Correctness of SlidingWindows runs

Easily proved by induction on phases in SlidingWindows runs:4

4 Figure c© 2003 Springer-Verlag Berlin Heidelberg, reprinted with permission

Copyright CC BY–NC-SA 4.0 18

Optimizing SlidingWindow by a component refinement

A file msg (F (i), i) which Matches may be Received multiple times

– namely by resending it until one of the acks is received by the sender.

Each time msg (F (i), i) is Received, F (i) is stored as part of
Receive&Ack.

To avoid this repetition of file copying, it suffices to refine the
Receive&Ack component StoreFile as follows:

StoreFile =

if G(syncBit(currMsg)) = undef

then G(syncBit(currMsg)) := file(currMsg)

Copyright CC BY–NC-SA 4.0 19

Two alternative protocol models

Among numerous other protocol models, expressed in alternative
specification languages, we mention two examples, which are
representative for a large variety of approaches.

A complete formalization using the B method, focussed on a
machine-verification of protocol properties of interest, including the
protocol correctness, can be found in:

– J.-R. Abrial and L. Mussat: Specification and design of a
transmission protocol by successive refinements using B.

• In: Mathematical Methods in Program Development (eds. M. Broy
and B. Schieder), Springer 1996

B models are formulae of first order logic enriched by set theory
concepts. They use the same abstract notion of state as the ASM
method. Defining a model and mechanical property verification are
intimately linked, but separated in the ASM method.

Copyright CC BY–NC-SA 4.0 20

Petri net models for AltBit and SlidingWindows

Petri nets use a graphical specification language that is more complex
than CSDs, the asynchronous Control State Diagrams used above

– CSDs are a generalization of Finite State Machine (FSM) flowcharts

• by permitting to use data and operations of arbitrary level of
abstraction, directly, without encoding

· avoiding the token straitjacket of Petri nets

– coming with a simple definition of their semantics, being a natural
visualization of control state ASMs all of which rules are of the form

if mode = i and Cond then
M
mode := j

We invite the reader to directly compare the AltBit and
SlidingWindows ASMs with their equivalent Petri net definition
below, which is copied from the book ‘Elements of Distributed
Algorithms’ (by W. Reisig), Springer-Verlag, 1998.

Copyright CC BY–NC-SA 4.0 21

Petri net definition for AltBit

This spec defines a global model of both sender and receiver actions.5

5 Figure c© 1998 Springer-Verlag Berlin Heidelberg, reprinted with permission

Copyright CC BY–NC-SA 4.0 22

Petri net definition for SlidingWindows

Further direct comparisons of Petri net6 and equivalent ASM models can
be found in E. Börger: Modeling distributed algorithms by Abstract State
Machines compared to Petri Nets. Springer LNCS 9675, 3-34 (2016)
6 Figure c© 1998 Springer-Verlag Berlin Heidelberg, reprinted with permission

Copyright CC BY–NC-SA 4.0 23

Related ASM models for the protocol

J. Huggins: Kermit specification and verification. In: Specification and
Validation methods (ed. E. Börger), OUP 1995, 247-293.

– This paper specifies and analyses the full Kermit protocol, reusing
variations of AltBit and SlidingWindow ASMs.

– A Kermit ASM template, from which AltBit and
SlidingWindows can be instantiated, can be found in Ch. 6.3.1.
of: E. Börger and R. Stärk: Abstract State Machines. Springer 2003.

E. Börger and A. Raschke: Modeling Companion for Software
Practitioners. Springer 2018
http://modelingbook.informatik.uni-ulm.de

– Fig.4.8 in this book generalizes the sender component of AltBit.

Copyright CC BY–NC-SA 4.0 24

http://modelingbook.informatik.uni-ulm.de

Copyright Notice

It is permitted to (re-) use these slides under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the original authors are mentioned

modified slides are made available under the same licence

the (re-) use is not commercial

Copyright CC BY–NC-SA 4.0 25

